
Cascading Style Sheets

Håkon Wium Lie

Thesis submitted for the degree of Doctor Philosophiœ
Faculty of Mathematics and Natural Sciences
University of Oslo
Norway
2005



© Håkon Wium Lie, 1994-2005

This work is licensed under a Creative Commons Attribution-NonCommercial 2.5
License.

Submitted 29th of March, 2005, as partial fulfillment of the degree
Doctor Philosophiœ
At the Faculty of Mathematics and Natural Sciences
University of Oslo
Norway

Series of dissertations submitted to the Faculty of Mathematics and Natural Sciences,
University of Oslo.
No. 498

ISSN 1501-7710

Cover: Inger Sandved Anfinsen.
Printed in Norway: AiT e-dit AS, Oslo, 2006.

Produced in co-operation with Unipub AS. The thesis is produced by Unipub AS
merely in connection with the thesis defence. Kindly direct all inquiries regarding
the thesis to the copyright holder or the unit which grants the doctorate.

Unipub AS is owned by The University Foundation for Student Life (SiO)

http://creativecommons.org/licenses/by-nc/2.5/
http://creativecommons.org/licenses/by-nc/2.5/


Abstract

The topic of this thesis is style sheet languages for structured documents on the web.
Due to characteristics of the web – including a screen-centric publishing model, a
multitude of output devices, uncertain delivery, strong user preferences, and the
possibility for later binding between content and style – the hypothesis is that the
web calls for different style sheet languages than does traditional electronic
publishing.

Style sheet languages that were developed and used prior to the web are analyzed
and compared with style sheet proposals for the web between 1993-1996. The
dissertation describes the design of a web-centric style sheet language known as
Cascading Style Sheets (CSS). CSS has several notable features including: cascading,
pseudo-classes and pseudo-elements, forward-compatible parsing rules, support for
different media types, and a strong emphasis on selectors. Problems in CSS are
analyzed, and recommended future research is described.

i





Inspiration

Style sheets constitute a wormhole into unspeakable universes.
–James D Mason, 1994

Style sheet languages are terribly underresearched.
–Philip M Marden, Ethan V Munson, 1999

In which form are you planning to publish the first edition of the Parsifal poem? Even if
I like Latin letters, I'm afraid they are unpopular (especially among publishers). So, if
the letters will be German, please make the type large and of good quality. The
legibility of a text is very important to me.
–Richard Wagner, in a letter to his publisher Ludwig Strecker

iii





Table of contents

Abstract.............................................................................................................. i

Inspiration ........................................................................................................ iii

Table of contents...............................................................................................v

List of figures .................................................................................................. xv

List of tables.................................................................................................. xvii

Acknowledgements ........................................................................................ xix

Overview and summary of the thesis ........................................................... xxiii

Chapter 1: Introduction ...................................................27
1.1 Structure versus presentation............................................................................27
1.1.1 Abstraction levels ....................................................................................28
1.1.2 Presentational HTML .............................................................................29
1.2 Style sheets ..................................................................................................30
1.2.1 WYSIWYG – a competing model ...........................................................31
1.2.2 Web characteristics .................................................................................31
1.2.3 Style sheet mechanisms for the web .........................................................33
1.3 CSS ..........................................................................................................33
1.3.1 The CSS development ............................................................................34
1.4 Summary and conclusions ...............................................................................35

Chapter 2: Structured documents .................................... 37
2.1 Abstraction levels ..........................................................................................38
2.2 Structured document systems............................................................................41
2.2.1 Scribe .....................................................................................................43
2.2.1.1 A simple document ..................................................................................43
2.2.1.2 Document types......................................................................................44
2.2.1.3 Scribe commands.....................................................................................45
2.2.1.4 Formatting environments..........................................................................46
2.2.1.5 Changing and adding environments ............................................................48

v



2.2.1.6 Scribe in context .....................................................................................49
2.2.2 LaTeX....................................................................................................50
2.2.3 Open Document Architecture (ODA).....................................................52
2.2.4 Standard Generalized Markup Language (SGML).....................................53
2.2.4.1 Document Type Definition (DTD) ...........................................................54
2.2.4.2 Processing Instructions..............................................................................55
2.2.4.3 LINK ..................................................................................................55
2.2.4.4 SGML in context...................................................................................57
2.2.5 HyperText Markup Language (HTML)...................................................58
2.2.5.1 HTML's original design ..........................................................................58
2.2.5.2 Structure versus style................................................................................59
2.2.5.3 HTML and SGML ...............................................................................60
2.2.5.4 HTML+ and HTML3...........................................................................61
2.2.5.5 HTML 3.2 ..........................................................................................64
2.2.5.6 HTML 4 .............................................................................................64
2.2.5.7 HTML in context ..................................................................................65
2.2.6 XML......................................................................................................66
2.2.6.1 The SGML Working Group charter ..........................................................66
2.2.6.2 The XML specification ............................................................................67
2.2.6.3 XML and style sheets ..............................................................................68
2.2.6.4 XML in context .....................................................................................69
2.3 The role of transformation languages .................................................................69
2.3.1 Adorning the tree....................................................................................70
2.3.2 Transforming the tree .............................................................................70
2.3.3 Formatting objects ..................................................................................71
2.3.4 Retaining both semantics and presentation...............................................72
2.3.5 Style versus transformation ......................................................................73
2.4 Summary and conclusions ...............................................................................74

Chapter 3: Style sheets prior to the web...........................77
3.1 Components of a style sheet language ................................................................78
3.2 Formatting Output Specification Instance (FOSI) ..............................................80
3.2.1 Syntax ....................................................................................................82
3.2.2 Selectors .................................................................................................83
3.2.3 Properties ...............................................................................................84
3.2.4 Values and units ......................................................................................86

vi



3.2.5 Value propagation ...................................................................................87
3.2.6 Visual formatting model ..........................................................................88
3.2.7 Linking mechanism.................................................................................90
3.2.8 Generated content ..................................................................................90
3.2.9 Other formatting contexts .......................................................................91
3.2.10 FOSI in context ....................................................................................91
3.3 DSSSL ......................................................................................................92
3.3.1 Syntax ....................................................................................................93
3.3.2 Selectors .................................................................................................95
3.3.2.1 Element construction rule..........................................................................95
3.3.2.2 Root construction rule ..............................................................................96
3.3.2.3 Default construction rule...........................................................................96
3.3.2.4 Query construction rule ............................................................................97
3.3.2.5 ID construction rule.................................................................................97
3.3.3 Properties ...............................................................................................97
3.3.4 Values and units ....................................................................................100
3.3.5 Value propagation .................................................................................102
3.3.6 Visual formatting model ........................................................................102
3.3.6.1 Flow objects .........................................................................................102
3.3.6.2 Areas .................................................................................................103
3.3.7 Linking mechanism...............................................................................103
3.3.8 Generated content ................................................................................104
3.3.9 Other formatting contexts .....................................................................104
3.3.10 DSSSL in context................................................................................104
3.4 P94 .........................................................................................................105
3.4.1 Syntax ..................................................................................................106
3.4.2 Selectors ...............................................................................................107
3.4.3 Properties .............................................................................................108
3.4.4 Values and units ....................................................................................109
3.4.4.1 Length units ........................................................................................109
3.4.4.2 Constraints..........................................................................................110
3.4.4.3 Elastic values .......................................................................................110
3.4.5 Value propagation .................................................................................111
3.4.6 Visual formatting model ........................................................................112
3.4.7 Linking mechanism...............................................................................113
3.4.8 Generated content ................................................................................113

Table of contents

vii



3.4.9 Other formatting contexts .....................................................................114
3.4.9.1 Views.................................................................................................114
3.4.10 P94 in context ....................................................................................116
3.5 Summary and conclusions .............................................................................116

Chapter 4: Style sheet proposals for the web ..................119
4.1 Robert Raisch's proposal (RRP)....................................................................120
4.1.1 Syntax ..................................................................................................120
4.1.2 Selectors ...............................................................................................120
4.1.3 Properties .............................................................................................121
4.1.4 Values and units ....................................................................................122
4.1.5 Value propagation .................................................................................124
4.1.6 Visual formatting model ........................................................................124
4.1.7 Linking mechanism...............................................................................125
4.1.8 Generated content ................................................................................125
4.1.9 Other formatting contexts .....................................................................125
4.1.10 RRP in context ..................................................................................125
4.2 Pei Wei's proposal (PWP) ...........................................................................126
4.2.1 Syntax ..................................................................................................127
4.2.2 Selectors ...............................................................................................130
4.2.3 Properties .............................................................................................130
4.2.4 Values and units ....................................................................................131
4.2.5 Value propagation .................................................................................131
4.2.6 Visual formatting model ........................................................................132
4.2.7 Linking mechanism...............................................................................132
4.2.8 Generated content ................................................................................133
4.2.9 Other formatting contexts .....................................................................133
4.2.10 PWP in context ..................................................................................133
4.3 Steve Heaney's proposal (SHP).....................................................................133
4.3.1 Syntax ..................................................................................................134
4.3.2 Selectors ...............................................................................................135
4.3.3 Properties .............................................................................................135
4.3.4 Values and units ....................................................................................135
4.3.5 Value propagation .................................................................................135
4.3.6 Visual formatting model ........................................................................135
4.3.7 Linking mechanism...............................................................................135

viii



4.3.8 Generated content ................................................................................136
4.3.9 Other formatting contexts .....................................................................136
4.3.10 SHP in context ...................................................................................136
4.4 Cascading HTML Style Sheets (CHSS)........................................................136
4.4.1 Syntax ..................................................................................................137
4.4.2 Selectors ...............................................................................................138
4.4.3 Properties .............................................................................................139
4.4.4 Values and units ....................................................................................139
4.4.4.1 Expressions .........................................................................................140
4.4.4.2 Blending values ....................................................................................140
4.4.5 Value propagation .................................................................................141
4.4.6 Visual formatting model ........................................................................142
4.4.7 Linking mechanism...............................................................................142
4.4.8 Generated content ................................................................................143
4.4.9 Other formatting contexts .....................................................................143
4.4.10 CHSS in context.................................................................................143
4.5 Joe English's proposal (JEP)..........................................................................143
4.5.1 Syntax ..................................................................................................144
4.5.2 Selectors ...............................................................................................144
4.5.3 Properties .............................................................................................145
4.5.4 Values and units ....................................................................................148
4.5.4.1 Length values.......................................................................................148
4.5.4.2 Color values.........................................................................................149
4.5.4.3 Images ................................................................................................149
4.5.4.4 Keyword values ....................................................................................149
4.5.5 Value propagation .................................................................................150
4.5.5.1 Inheritance ..........................................................................................150
4.5.5.2 Cascading ...........................................................................................151
4.5.6 Visual formatting model ........................................................................151
4.5.7 Linking mechanism...............................................................................153
4.5.8 Generated content ................................................................................153
4.5.9 Other formatting contexts .....................................................................154
4.5.10 JEP in context.....................................................................................154
4.6 Sketch of Simple Formatting Primitives (SSFP) ...............................................154
4.6.1 Syntax ..................................................................................................155
4.6.2 Selectors ...............................................................................................155

Table of contents

ix



4.6.3 Properties .............................................................................................156
4.6.4 Values and units ....................................................................................156
4.6.5 Value propagation .................................................................................157
4.6.6 Visual formatting model ........................................................................158
4.6.7 Linking mechanism...............................................................................158
4.6.8 Generated content ................................................................................158
4.6.9 Other formatting contexts .....................................................................159
4.6.10 SSFP in context ..................................................................................159
4.7 DSSSL Lite .............................................................................................159
4.7.1 Syntax ..................................................................................................160
4.7.2 Selectors ...............................................................................................160
4.7.3 Properties .............................................................................................161
4.7.4 Values and units ....................................................................................162
4.7.5 Value propagation .................................................................................163
4.7.6 Visual formatting model ........................................................................163
4.7.7 Linking mechanism...............................................................................163
4.7.8 Generated content ................................................................................163
4.7.9 Other formatting contexts .....................................................................163
4.7.10 DSSSL Lite in context.........................................................................164
4.8 Stream-based style sheet proposal (SSP) ..........................................................165
4.8.1 Syntax ..................................................................................................165
4.8.2 Selectors ...............................................................................................166
4.8.3 Properties .............................................................................................167
4.8.4 Values and units ....................................................................................171
4.8.4.1 Attribute references ................................................................................172
4.8.4.2 Property references .................................................................................172
4.8.4.3 Built-in functions..................................................................................172
4.8.5 Value propagation .................................................................................173
4.8.6 Visual formatting model ........................................................................173
4.8.7 Linking mechanism...............................................................................174
4.8.8 Generated content ................................................................................175
4.8.9 Other formatting contexts .....................................................................175
4.8.10 SSP in context ....................................................................................175
4.9 PSL96 .....................................................................................................176
4.9.1 Syntax ..................................................................................................176
4.9.2 Selectors ...............................................................................................178

x



4.9.3 Properties .............................................................................................178
4.9.4 Values and units ....................................................................................179
4.9.4.1 Expressions .........................................................................................179
4.9.4.2 Specified versus actual values ...................................................................180
4.9.5 Value propagation .................................................................................181
4.9.6 Visual formatting model ........................................................................181
4.9.7 Linking mechanism...............................................................................182
4.9.8 Generated content ................................................................................182
4.9.9 Other formatting contexts .....................................................................183
4.9.10 PSL96 in context ................................................................................184
4.10 Summary and conclusions ...........................................................................185

Chapter 5: Web requirements ...........................................187
5.1 Web characteristics formulated as requirements...................................................187
5.2 Summary and conclusions .............................................................................192

Chapter 6: Cascading Style Sheets...................................195
6.1 Syntax .....................................................................................................195
6.1.1 Forward-compatible parsing ..................................................................196
6.1.2 At-keywords.........................................................................................197
6.2 Selectors ....................................................................................................198
6.2.1 Simple and contextual selectors .............................................................198
6.2.2 Pseudo-elements and pseudo-classes ......................................................199
6.2.3 Selectors in CSS1..................................................................................200
6.2.4 Selectors in CSS2..................................................................................200
6.3 Properties ..................................................................................................200
6.4 Values and units.........................................................................................202
6.4.1 Length units .........................................................................................206
6.5 Value propagation.......................................................................................208
6.5.1 Cascading .............................................................................................208
6.5.1.1 The basic cascading mechanism ................................................................209
6.5.1.2 Multiple sources: User versus author style sheets ..........................................210
6.5.1.3 Combining partial style sheets with the browser's default style sheet .................211
6.5.2 Inheritance ...........................................................................................212
6.5.3 Initial value...........................................................................................213

Table of contents

xi



6.6 Visual formatting model ...............................................................................213
6.6.1 Creating boxes from elements ...............................................................214
6.6.2 The box model .....................................................................................215
6.6.2.1 Basic boxes: block and inline ...................................................................216
6.6.2.2 Outside-in versus inside-out formatting .....................................................217
6.6.3 Beyond the basic box model ..................................................................218
6.6.4 Inspiration from other formatting models...............................................219
6.7 Linking mechanism.....................................................................................220
6.8 Generated content .......................................................................................220
6.8.1 Counters ..............................................................................................221
6.9 Other formatting contexts .............................................................................221
6.9.1 Media types ..........................................................................................223
6.10 CSS in context ........................................................................................224
6.11 Summary and conclusions ...........................................................................226

Chapter 7: Problems in CSS ............................................. 229
7.1 Errors in the specifications .............................................................................229
7.2 Problems with the specifications ......................................................................230
7.2.1 Missing functionality.............................................................................230
7.2.2 Excessive functionality ..........................................................................231
7.2.3 Poor design...........................................................................................233
7.2.3.1 Overloaded properties .............................................................................233
7.2.3.2 Positioning ..........................................................................................233
7.2.3.3 XML syntax .......................................................................................234
7.3 Cascading problems .....................................................................................235
7.3.1 Self-inflicted problems ..........................................................................235
7.3.2 Problems resulting from markup............................................................237
7.3.3 User interface problems.........................................................................238
7.3.4 Complexity problems............................................................................239
7.4 Problems in implementations .........................................................................239
7.5 Summary and conclusions .............................................................................240

Chapter 8: CSS for small screens .................................... 243
8.1 The problem ..............................................................................................243
8.1.1 Cascading .............................................................................................244

xii



8.1.2 Linearization.........................................................................................245
8.1.3 Element removal...................................................................................246
8.1.4 Element resizing ...................................................................................247
8.2 Summary and conclusions .............................................................................247

Chapter 9: Cascading links.............................................. 249
9.1 Background ...............................................................................................249
9.2 Background ...............................................................................................250
9.3 Making hyperlinks......................................................................................250
9.4 Replaced elements .......................................................................................251
9.5 Summary and conclusions .............................................................................252

Chapter 10: Future research.............................................253
10.1 Summary and conclusions ...........................................................................256

Conclusions................................................................ 257

Glossary...................................................................... 261

References .................................................................. 277

Colophon.....................................................................303

Table of contents

xiii





List of figures

Figure 1: The abstraction ladder.........................................................................39
Figure 2: Inheritance and defaulting flow chart in FOSI......................................89
Figure 3: The PWP sample document rendered in Viola................................... 128
Figure 4: The CSS box model. ........................................................................ 215
Figure 5: Two different counter styles. ............................................................. 222

xv





List of tables

Table 1: A comparison of document formats on the ladder of abstraction. ...........42
Table 2: The ambitions and achievements of the six different

structured document systems.........................................................................44
Table 3: Common environments offered in Scribe. ............................................47
Table 4: FOSI's categories. ................................................................................85
Table 5: DSSSL's flow objects and associated properties. .....................................98
Table 6: Properties of P94. .............................................................................. 108
Table 7: RRP's catetories and properties. ......................................................... 122
Table 8: A comparison of categories in FOSI and RRP. ................................... 122
Table 9: A comparison of the font category in RRP and FOSI.......................... 123
Table 10: JEP's properties................................................................................ 146
Table 11: Categories in JEP. ............................................................................ 152
Table 12: SSFP's properties along with CSS equivalents.................................... 157
Table 13: The properties of DSSSL Lite. .......................................................... 162
Table 14: The number of flow object classes and properties in DSSSL Lite,

DSSSL-O and DSSSL................................................................................. 166
Table 15: Properties proposed by SSP. ............................................................. 167
Table 16: An evaluation of how different style sheet languages and

proposals perform with respect to web requirements. ................................... 189
Table 17: Selectors in CSS1............................................................................. 201
Table 18: Selectors added in CSS2. .................................................................. 201
Table 19: Properties in CSS1. .......................................................................... 203
Table 20: Properties introduced in CSS2.......................................................... 205
Table 21: CSS evaluated with respect to the web requirements. ........................ 226

xvii





Acknowledgements

Having glanced through a fair number of doctoral dissertations myself, I believe the
acknowledgements to be one of the most widely read sections. It is where the
author, for a brief moment, can stray from the dryness of academic writing to express
years of accumulated frustration and gratitude. Having worked on Cascading Style
Sheets (CSS) for a decade, I have had my fair share of both frustration and gratitude.
I'll try to express the latter in words while the frustration will be left to the leading.1

My gratitude goes first and foremost to my parents, Sissel and Alfred Lie. My
father set a fine academic example by getting his PhD at the age of 50 and the fact
that I'm beating him by a decade or so is a complement to him rather than to me.
My mother's love of publications and her extensive information filing system have
also contributed to my own urge to get my notes into order. I hereby pass the
challenge of beating their father to a PhD onto my own children. Or, at least, to get
their notes in order.

Two very special people deserve particular mention and thanks; without them,
this thesis would not exist. Bert Bos joined me at a point when CSS had been named
and waved, but was still a set of immature ideas rather than a coherent specification.
During some short weeks around a white-board in the summer of 1995, CSS was
hammered out. I will remember that time in Sophia-Antipolis as some of best days
and nights of my life. Karen Mosman is my publisher, muse and partner. Her
enduring loyalty to my writing and to my person has changed both for the better.
My writing and my person, that is; Karen herself is practically perfect.

The World Wide Web Consortium (W3C) has been a good home for CSS. I
thank Tim Berners-Lee and Jean-Francois Abramatic for setting up the
organizational structures necessary to make it happen. Tim also gets very special
thanks for inventing the web, not patenting it, and leaving a stylistic gap to filled.
Among my W3C colleagues who were instrumental in supporting the work in the
early days are Dave Raggett and Dan Connolly. Dave's browser, later named Arena,
provided the perfect testing ground for CSS. Dan – after some healthy initial

1 Terms in bold are explained in the Glossary (p. 261).

Acknowledgements

xix



resistance – supported me when presenting CSS to the W3C HTML Editorial
Review Board (ERB) which he co-chaired with Dave.

One small anecdote from the ERB meeting in April 1996 is worth recounting.
Since I was there primarily to present CSS rather than take part in HTML
discussions, I was given the task of taking minutes. It so happened that the name of
the next HTML version was decided in this meeting. I hope I will be forgiven for
disclosing an (anonymized) excerpt from the minutes:

The naming issue was raised, and the meeting switched

into brainstorm mode. Suggestions fell into three groups:

- version numbers: 3.1, 3.2, 3.5, 4.0

- code names: Wilbur, Classic HTML, Unified HTML,

Common HTML, W3C HTML

- compounds: HTML96, W3C HTML4

In the end, people preferred version numbers. NN

argued that Wilbur was a major change that deserved a new

major number: 4.0. Other people didn't like the zero in

that name. "HTML 3.2" was selected after discussions and

votes.

So, somewhat by accident, I was the first person to type the now ubiquitous string
“HTML 3.2” into a computer. A few small key strokes for a man, a giant leap for the
web.

Inside W3C, the CSS Working Group has been the keeper of the flame. Some
highly intelligent and dedicated people joined the group over the years. I would
especially like to thank Ian Hickson, David Baron, Tantek Çelik, Daniel Glazman
and Eric Meyer. Additionally, Steven Pemberton chaired the first W3C Workshop
on Style Sheets, Chris Lilley served as chair for many years, and Ian Jacobs
contributed his editorial skills. I am grateful to all of you.

In 1999, when CSS1 and CSS2 had been written, I joined Opera Software to
ensure that the specifications were implemented correctly by at least one browser.
Thanks go to Jon von Tetzchner and Geir Ivarsøy for founding a company worth
working for. Geir, along with Karl Anders Øygard, is also the mastermind behind
Opera's display engine that makes CSS shine on screens of all sizes. Thanks also go
to Snorre Grimsby, Rijk van Geijtenbeek, Brian Wilson and Sue Sims for supporting
CSS internally and externally.

Many people have been helpful while writing this thesis. I am indebted to Paul
Grosso, Vincent Quint, Pamela Gennusa, Ethan Munson, Joe English, Harvey
Bingham, Paul Prescod, Jany Quintard, Yann Dirson, Dave Pawson, Ian Castle,

xx



Didier P. H. Martin, Geir Ove Grønmo and Bette Harvey for answering my many
questions about the past. I am grateful to Joe English, Wayne Gramlich, James
Mason, Jeff Moore and Dan Connolly for allowing me to quote from their
unpublished writings. Gunilla Petersén of the Royal Swedish Opera directed me to
the inspirational Wagner quote.

This thesis concerns style sheet proposals for the web. I am grateful to the authors
of the proposals for contributing a very interesting topic of research. Having analyzed
their proposals without having access to their minds, I may have misunderstood or
misinterpreted their work. If so, please contact me. Thanks also go to the participants
on the www-talk, www-html and www-style mailing lists. Without the
communities that formed on the mailing lists, the web would not have existed as we
know it today.

CSS has borrowed many ideas from the MIT Media Lab where I spent two
forming years. Thanks to Walter Bender and Andy Lippman for exposing me to
those ideas. At the University of Oslo, Ole Hanseth and Gisle Hannemyr have
motivated me to write up my notes into a thesis, and advised me on how this should
be done. Without them, my notes would still be scattered around.

I am grateful to Anthea Vaughan for patiently copy-editing my drafts.
I would like to thank the people who created FrameMaker, GNU-emacs, and the

Prince formatter. FrameMaker taught me typography, GNU-emacs gracefully
accepted all my handcrafted tags, and Prince put this thesis onto paper.

Oslo, March 2005
Håkon Wium Lie

Acknowledgements

xxi





Overview and summary of the thesis

The topic of this thesis is style sheet languages for structured documents on the web.
The hypothesis is that the web calls for different style sheet languages than does
traditional electronic publishing. Further, the design of a style sheet language that
fulfills the specific requirements of the web, namely Cascading Style Sheets, is
described. The thesis can be divided into a why part (Chapter 1-5), a how part
(Chapter 6-9), and where to go from here (Chapter 10).

Chapter 1: Introduction

The first chapter is an introduction to the the topic of the thesis and related subjects.
The historical context in which CSS was developed is described, including the
development of HTML from its roots in structured documents to the presentational
tags introduced by various browsers. Key concepts such as structured
documents, style sheets and cascading are introduced.

Chapter 2: Structured documents

Style sheet languages and structured documents are mutually dependent. Without
style sheets, structured documents cannot be presented, and without structured
documents there is nothing for style sheets to present. Chapter 2 starts by
introducing the ladder of abstraction which is proposed as a measuring tool for
structured document formats. Such formats developed prior to the web (Scribe,
LaTeX, ODA, SGML) and for the web (HTML, XML) are described. Finally, the
role of transformation languages vs. style sheet languages is discussed.

Chapter 3: Style sheets prior to the web

Chapter 3 is the first chapter in which style sheets are discussed in some detail. The
first part of the chapter establishes a set of criteria for style sheet languages; in order
to qualify as a style sheet language six components must be present: syntax,
selectors, properties, values and units, value propagation and a formatting
model. Three style sheet languages developed before the Web (FOSI, DSSSL and

Overview and summary of the thesis

23



P94) are described. The historical background of each is followed by a technical
review.

Chapter 4: Style sheet proposals for the web

This chapter is a survey of the style sheet languages that were proposed for the web
in the period 1993-1996. Nine different proposals are reviewed according to the
criteria established in the previous chapter.

Chapter 5: Web requirements

Publishing on the web is different from other types of electronic publishing. Six
web-specific requirements are discussed in Chapter 5. None of the pre-web style
sheet languages nor subsequent style sheet language proposals fulfill all requirements
for publishing on the web.

Chapter 6: Cascading Style Sheets

This chapter marks the start of the “how” section of the thesis. In this chapter
Cascading Style Sheets (CSS) is described in some detail, and the language is
evaluated according to the criteria that were established in Chapter 3. CSS is also
evaluated against the web requirements discussed in Chapter 5.

Chapter 7: Problems in CSS

This chapter discusses problems in, and related to, the CSS specifications. These
range from simple spelling errors to more complex questions such as whether or not
some functionality fulfills its intended role. The chapter is loosely organized along an
axis of complexity; the first part describes how simple errors have been handled.
Thereafter, real and perceived problems in the specifications are discussed. The last
section is dedicated to problems in the cascading mechanism.

Chapter 8: CSS for small screens

This chapter describes how cascading can be used to render web pages on small
screens. By enforcing a carefully crafted browser style sheet, web pages are
reformatted into narrow columns to avoid horizontal scrolling.

Cascading Style Sheets

24



Chapter 9: Cascading links

A novel use of CSS to represent hyperlink information rather than stylistic
information is discussed in this chapter. Cascading links make it possible to deploy
new markup languages with hyperlinks in them, without user agents knowing
how linking information is coded.

Chapter 10: Future research

This chapter points to areas of future research and development that are likely to
yield beneficial results.

Chapter 11: Conclusions

The conclusions support the argument of the thesis: due to its characteristics, the
web calls for style sheet languages different from those for traditional electronic
publishing. The main contributions of the thesis are listed: the ladder of abstraction,
the components of a style sheet language, the web requirements on style sheet
languages, and CSS.

Overview and summary of the thesis

25





Chapter 1:

Introduction

Around 1990, Tim Berners-Lee developed three specifications that formed the basis
of the World Wide Web project: the HyperText Markup Language (HTML) was
developed as a document format for the web; Universal Resource Locators (URL)
were added to represent links between the documents; and the HyperText Transfer
Protocol (HTTP) was developed to transfer documents between machines on the
internet [Berners-Lee 1999]. Both specifications and implementations were made
freely available by CERN.

The web quickly gained momentum. With the launch of the National Center for
Supercomputing Applications (NCSA) Mosaic browser in 1993 [Andreessen 1993a],
users suddenly had an attractive browser to surf a steadily increasing set of
interlinked documents. With an rising number of users, more authors were attracted
to the web, and content proliferated.

In the beginning, HTML, was a simple structured document format with
markup tags added between text strings to indicate the role of the text. For
example, a string of text could be marked as a paragraph, while another string could
be marked as a clickable link. The elements in early HTML were logical rather than
presentational. For example, HTML would mark some text as a heading but
would not describe how the heading was to be presented. The presentation of text –
including what font, color and size to use – was primarily determined by the
browser.

1.1 Structure versus presentation
Scientific environments such as CERN value logic, structure and content more
highly than aesthetics, imagery and style. This sense of structure is reflected in
HTML. Each paragraph is marked as such and headings are given a numbered level
to indicate their place in the document structure.

As the web attracted attention outside of scientific environments, authors started
complaining that they did not have enough influence over the appearance of their
pages. One of the most frequent questions asked by authors new to the web was how

27

surf


to change fonts and colors of elements. This excerpt from a message sent to the
www-talk [www-talk] mailing list early in 1994 [Andreessen 1994a], gives a sense of
the tension between authors and browser implementors2:

In fact, it has been a constant source of delight for me over the past year to get to
continually tell hordes (literally) of people who want to – strap yourselves in, here it comes
– control what their documents look like in ways that would be trivial in TeX, Microsoft
Word, and every other common text processing environment: 'Sorry, you're screwed.'

The author of the message was Marc Andreessen, one of the programmers behind
the popular NCSA Mosaic browser. He later became a co-founder of Netscape
which fullfilled authors' requests by introducing presentational tags in HTML. On
October 13, 1994, Netscape announced [Andreessen 1994b] the first beta release of
their browser. The Netscape browser supported a set of new presentational HTML
tags (e.g. CENTER to center text) and more were to follow shortly.

1.1.1 Abstraction levels

By adding presentational tags to HTML, the language evolved from being an
abstract, structured, markup language where authors marked the different logical
roles of the text (paragraphs, headlines, lists and so forth) towards a concrete
presentation language where emphasis is on the final form presentation of
documents (fonts, colors and layout).

In traditional paper-based publishing, the reader receives a final form product.
Each letter on a printed page has a fixed position, shape, size and color that cannot be
changed by the reader. Electronic documents, however, are unfinished products that
must be assembled before they can be presented to the human reader. In the
assembly process – better known as formatting – many choices of how to present
the document are made. For example, the browser must pick the fonts and colors to
use when presenting the document on a color screen. The level of processing that an
electronic document needs will vary considerably depending on what document
format is used. As such, electronic documents are similar to furniture: some furniture
comes pre-assembled while other items are bought in flat packages and the owner
must do the final assembly. If a document format requires much processing, it is said

2 I have quoted from a message sent to a mailing list for the developer community in this
chapter, and will do so many times in chapters to come. Mailing lists were crucial for bringing
together the web community in the early years, and hypertext archives of mailing lists quickly
sprang up in the early 1990s. Today, a decade later, these archives provide valuable insights to
the web's design and development.

Cascading Style Sheets

28



to have a high level of abstraction. If the document format needs little processing, it
is said to have a low level of abstraction.

Determining the right abstraction level is an important part of designing a
document format. If the abstraction level is high, both the authoring process and the
task of formatting the document become more complex. The author must relate to
non-visible abstract concepts. On the receiving end, the browser must transform
elements from abstract to concrete objects and this task is more complex if the
elements are highly abstract. The benefit of a high abstraction level is that the
content can be reused in many contexts. For example, a headline can be presented in
large letters on printed sheets, and with a louder voice in a text-to-speech system.

Conversely, a low level of abstraction will make the authoring and formatting
process easier (up to a point). Authors can use visually oriented WYSIWYG (What
You See Is What You Get) tools, and the browser does not have to perform
extensive transformations before presenting the document. The drawback of using
presentation-oriented document formats is that the content is not easily reusable in
other contexts. For example, it can be difficult to make presentation-oriented
documents available on a device with a different screen size, or to a visually impaired
person.

When transforming documents from one format to another, the chances are that
the two formats are at different abstraction levels. In general, it is possible to
transform documents from a higher to a lower abstraction level, but not the other
way around. The ladder of abstraction is introduced in this thesis as a way of
measuring the level of abstraction.

1.1.2 Presentational HTML

The introduction of presentational tags in HTML was a downwards move on the
ladder of abstraction. Several of the new elements (e.g., BLINK) were meaningful
only for particular output devices (how is blinking text displayed in a text-to-speech
system?). The creators of HTML intended it to be usable in many settings but
presentational tags threatened device independence, accessibility and content reuse.

The development of HTML into a presentation-oriented language also changed
the power balance between authors and users. Structured documents must be
formatted by the browser before presentation, and – to some extent – the formatting
process can be influenced by the user. However, when the browser receives a
document in its final form, the formatting process is complete and can no longer be
influenced by the user.

Chapter 1: Introduction

29



Web authors had asked for more influence over the document presentation and
welcomed this development, but there was also resistance in the web community.
Many felt that the web had the potential of realizing personalized publishing where
the reader – rather than the publisher – was in control. Content should be selectable
based on reader preferences, and the medium and form of presentation should also
be the choice of the reader. By turning HTML into a presentation language there
was a risk of losing the degrees of freedom necessary to realize a user-centric
publishing model.

1.2 Style sheets
Style sheets were proposed as an alternative to the evolution of HTML from a
structural language to a presentational language. The term style sheet is used in
traditional publishing as a way to “ensure consistency” [Chicago 1993] in documents.
In the traditional publishing process, a manuscript is accompanied by a style sheet
which serves as a “running account of rules about diction and language usage adopted for a
particular manuscript” [Brüggemann-Klein&Wood 1992].

In the 1980's, publishing changed dramatically with the introduction of personal
computers for use in the preparation of manuscripts. Electronic publishing offered
tools to ease all stages of publishing from authoring, through editing, to printing. In
electronic publishing, the term style sheets came to mean a set of rules regarding
how to present content, rather than rules for how to author content. Style sheets
would be specified by the designer and sent to the typesetter before printing.
Typically, they would describe the visual layout of a text-centric document,
including fonts, colors and white space.

In this thesis, the term style sheet refers to a set of rules that associate stylistic
properties and values with structural elements in a document, thereby expressing
how to present the document. Style sheets generally do not contain content, are
linkable from documents, and they are reusable. This definition allows the term to
be used in the context of electronic publishing both off and on the web.

Style sheets were available in electronic publishing systems from around 1980 (see
Chapter 2 and 3). Combined with structured documents, style sheets offered late
binding [Reid 1989] of content and presentation where the content and the
presentation are combined after the authoring is complete. This idea was attractive to
publishers for two reasons. First, a consistent style could be achieved across a range of
publications. Second, the author did not have to worry about the presentation of the
publication but could concentrate on the content.

Cascading Style Sheets

30



Indeed, some authors found it liberating not having to worry about presentational
details in the authoring process [Cailliau 1997]. However, most authors ended up
using authoring systems which emphasizes the presentation rather than the structure
[Sørgaard 1996].

1.2.1 WYSIWYG – a competing model

WYSIWYG – What You See Is What You Get – is a competing model for
authoring documents. WYSIWYG applications constantly update a final form
presentation. As the author types, the screen is updated to reflect the page layout that
would result should the document be printed at that point.

Instead of the late binding between presentation and content, employed by
structured documents and style sheets, WYSIWYG offers instant binding; all
editing operations result in instant visual changes to the final presentation. This
approach often results in documents whose authors emphasize the final presentation
– which is typically a printed document – rather than the logical markup.

Several applications try to combine the concept of structured documents with
WYSIWYG editing, including Adobe's FrameMaker [FrameMaker], Microsoft's
Word [MS-Word] and W3C's Amaya [Amaya]. Typically, these applications offer
the author several views of the document one of which is WYSIWYG and others
that are more structural. This makes it possible to author structured documents with
a WYSIWYG tool. There is a risk associated with using WYSIWIG tools, however:
they also allow authors to make purely presentational modifications which may not
be consistent with the document structure.

1.2.2 Web characteristics

Research has shown that when documents are authored with the printed copy as the
final target, it is difficult to motivate authors to work on a logical level rather than a
visual level [Sandahl 1999]. With the emergence of the web, however, the
possibilities for reuse of content increases. Instead of printing and distributing
documents on paper, web documents are transferred electronically to the user's
computer. The shift towards electronic distribution of documents has several key
characteristics that influence both the authoring process and style sheet languages.

• Late binding becomes later binding: On the web, documents are transmitted in
electronic form to the user's computer. The late binding between content and
presentation of electronic publishing becomes even later binding on the web.

Chapter 1: Introduction

31



The binding no longer takes place in the publishing house but, rather, in the
user's computer. This increases the freedom of the presentation but also poses a
new performance challenge since the binding takes place while the user is
waiting. Also, the author is not present to make sure that the presentation is
correct.

• Paper-centric publishing becomes screen-centric: Before the advent of the web,
most electronic documents ended up as printed documents. They were edited
and processed on computer screens but, most often, the final media type was
print. On the web, most users view documents on a screen.

• Single output becomes multiple outputs: Although screens are the primary
media type on the web, many other types exist. Authors do not know what kind
of output device will be employed by a user. There is no longer one final form
presentation, there are many. Therefore, it is important that style sheets can
describe presentations for multiple output devices.

• Author control becomes shared author/user influence: Since the binding
between content and presentation takes place in the user's computer, influences
from several sources may be combined to form a presentation. Given this
freedom, it seems reasonable that the user – as well as the author – should be able
to influence the presentation. Personalized presentations based on the needs and
preferences of the user become possible. This is different from other publishing
environments where authors and publishers have full control of the presentation.

• Stand-alone documents become hyperlinked: The web is a large collection of
hyperlinked documents and information that was previously expressed as textual
references can now be active hyperlinks.

• Dependable delivery becomes uncertain: Web resources are distributed across
many connected computers and the chance of a resource not being available is
significant. Another change is that the web is more likely to fail than are
in-house publishing systems. It is natural to make the style sheet available on the
web, but the resource may not always be available at the user's end.

Thus, with the introduction of the web the focus of style sheets is shifted from being
an author's tool in the authoring process to being a tool for content reuse after the
content has been generated. Style sheets on the web are potentially more important
than are style sheets for paper-centric publishing because the possibility of content
reuse is greater. Just as the nature of style sheets changed from paper-based

Cascading Style Sheets

32



publishing to electronic publishing, so has the nature of style sheets changed again
for web publishing.

1.2.3 Style sheet mechanisms for the web

A crude form of style sheets was hard-coded into the first WWW client
implemented on the NeXT machine at CERN. However, no specification for style
sheets was written and no syntax for a style sheet language was proposed; it was
considered a matter for each browser to decide how to best display pages to its users.

The potential benefits of using style sheets on the web are significant. A
well-developed style sheet mechanism would give authors a richer stylistic
vocabulary than they could hope for in an evolving HTML. Also, HTML would
remain a structured markup language that worked on a wide range of devices.

For these reasons, many people on the www-talk mailing list [www-talk], which
was the electronic meeting place for the early web community, agreed that the web
could benefit from style sheets. However, there was disagreement as to whether or
not the web would require a new style sheet language or if one of the existing
languages, designed primarily for paper-based publishing, would be suitable.

Several style sheet languages for the web were proposed in 1993 (see Chapter 4:
Style sheet proposals for the web) but none of them gained momentum. This was
mostly due to lack of support in browsers; as long as Mosaic – by far the most
popular browser of its day – did not support style sheets there was little motivation
for authors to write them. Also, none of the proposals were developed to a stable
state. A successful style sheet language for the web had to be compelling enough
both for browser developers to implement, and for authors to use.

1.3 CSS
Three days before Netscape announced their new browser, this author published the
first CSS proposal (named Cascading HTML style sheets – a proposal) [Lie 1994] on the
web. In addition to describing fonts, colors and layout of documents – which several
proposals had done previously – CSS introduced new functionality to account for
the differences in publishing imposed by the web. The concept of cascading
allowed both authors and users to influence the presentation of a document:

The proposed scheme supplies the brower with an ordered list (cascade) of style sheets. The
user supplies the initial sheet which may request total control of the presentation, but –
more likely – hands most of the influence over to the style sheets referenced in the incoming
document.

Chapter 1: Introduction

33



Negotiating between the needs and wishes of readers and authors was one of the
main ambitions of CSS. If successful, authors would get their fair share of influence
over the presentation and would not feel compelled to use presentational HTML and
other tricks. Readers, on the other hand, would be served documents in a form in
which they could choose between accepting the author's suggested presentation or
specify their own.

In many cases there would be no conflict between the author and the reader.
Neither would want to specify the presentation of the document. In such cases, it is
important for the browser to have a default style sheet that describes a default
presentation of HTML documents. CSS, therefore, defines three possible sources for
style sheets: authors, readers, and browsers. CSS is able to combine style sheets from
these sources to form the presentation of a document. The process of combining
several style sheets – and resolving conflicts if they occur – is known as cascading.

1.3.1 The CSS development

The first CSS proposal was put forward in the spirit of open exchange of ideas on
how the web should develop, and discussions took place on public mailing lists. A
number of people responded to the proposal
[Bos 1994][Behlendorf 1994][Wei 1994] and the draft was developed further.
During the course of 1995, approximately eight revisions were published. The last of
these, published in December 1995, was declared to be stable and browser vendors
were “encouraged to use it as a base for implementations” [Lie 1996].

With a few minor exceptions, the syntax from the draft of December 1995 has
remained stable and the first section of the specification can still serve as an
introduction to CSS:

Designing simple style sheets is easy. One only needs to know a little HTML and some
basic desktop publishing terminology. E.g., to set the text color of 'H1' elements to blue,
one can say:

H1 { color: blue }

The example consists of two main parts: selector ('H1') and declaration ('color: blue').
The declaration has two parts, property ('color') and value ('blue').

The CSS1 specification became a W3C Recommendation [CSS1 1996] in
December 1996. In May 1998 CSS2 became a W3C Recommendation
[CSS2 1998]. Chapter 6 (Cascading Style Sheets) describes the development of the
Recommendations in more detail.

Cascading Style Sheets

34



A decade after the first CSS proposal was published, all major web browsers
support CSS and a majority of web pages use CSS. It may still be too early to fully
evaluate CSS and its impact on the web, but it possible to study the design of CSS
and compare it with other style sheet languages and style sheet language proposals.

1.4 Summary and conclusions
This chapter introduces some of the key concepts of this thesis. HTML was
developed as a simple structured document format for the web. As web authors
requested more presentational influence over their documents, HTML started
developing into a presentational rather than a structural language. To stop this
downwards slide on the ladder of abstraction, CSS was developed as a style sheet
language for the web. Style sheets have been part of electronic publishing systems
since around 1980. On the web, the focus of style sheets is shifted from being a tool
in the authoring process to being a tool for content reuse after the content has been
generated.

The thesis explores in more detail why the web requires style sheet languages
different from those in other kinds of publishing, and how such a language can be
designed. Before doing so, however, it is necessary to discuss two other topics. First,
structured documents must be understood since style sheets are applied to structured
documents. Second, style sheet languages developed before the advent of the web
must be researched to determine if any of these languages are suitable for use on the
web. This is done in Chapter 2 and Chapter 3, respectively.

Chapter 1: Introduction

35





Chapter 2:

Structured documents

Style sheet languages and structured document formats are mutually dependent on
each other. Without style sheets, structured documents cannot be presented, and
without structured documents there is nothing for style sheets to present. Due to the
strong relationship between the two, it is important to understand structured
documents when studying style sheet languages. Some structured document
systems that have been most influential on style sheet languages are discussed in this
chapter.

In a seminal work titled Structured Documents [André, et al. 1989], the topic is
defined as:

A document may be described as a collection of objects with higher-level objects formed from
more primitive objects. The object relationships represent the logical relationships between
components of the document. For example, the present document is described as a book at
the highest level. The book is subdivided into chapters, each chapter into sections,
subsections, paragraphs, and so forth. Such a document organization has come to be
known as the structured document representation.

One important feature of the structured document representation is that it has a
certain level of abstraction. The level of abstraction is especially important when the
structured document is combined with a style sheet to form a presentation.
Therefore, the first part of this chapter discusses abstraction levels in structured
documents and proposes a ladder of abstraction to measure the level of abstraction
in web document formats.

The second part of the chapter describes seminal structured document systems,
namely Scribe; LaTex; Open Document Architecture (ODA); Standard Generalized
Markup Language (SGML); HyperText Markup Language (HTML); and Extensible
Markup Language (XML). Each of the systems is briefly described historically and
technically with special emphasis on their relationships with style sheet languages.

A third part discusses the relationship between transformation languages and style
sheet languages on the web.

37



2.1 Abstraction levels
In his book, Language in Action, Hayakawa [Hayakawa 1940] introduces the notion of
a linguistic ladder of abstraction. At the bottom of the abstraction ladder is an object.
As an example, Hayakawa uses a cow named Bessie. The cow is composed of muscle,
bones, skin and other biological parts. As the first step up the ladder, we disregard
the biology inside the cow but retain its physical properties – for example its color,
size and shape – and we call it Bessie. Bessie is just one of many objects that can be
classified as cows. On the farm where Bessie lives, there are many other kinds of
animals that can all be referred to as livestock. The climb up the ladder of abstraction
can continue to farm assets and wealth. This concept is illustrated in Figure 1.

A similar example of abstraction levels can be found in the field of computer
networking. In 1983, the International Standards Organization (ISO) developed a
network model called Open Systems Interconnection (OSI) Reference Model
which defined a framework of computer communications. The ISO/OSI Reference
Model has seven layers, each of which has a different level of abstraction. The seven
layers are: physical, data link, network, transport, session, presentation and
application.

I believe the notion of an abstraction ladder is useful when evaluating document
formats. How high a certain document format is on the ladder will determine the
complexity of formatting the document into a presentation. Since the formatting of a
document is specified by a style sheet, the abstraction level is a crucial feature for the
success of style sheets.

The vertical nature of a ladder corresponds to how one describes abstraction levels
as high or low. Typical characteristics of document formats that are high on the ladder
of abstraction are:

• The information needs processing in order to be presented. For example, in
order to render an HTML document visually, the words must be broken into
lines, fonts must be selected, and the characters must be turned into rasterized
glyphs.

• The information can be processed and presented in many different ways.
Presenting a document visually is only one of several possibilities; others include
aural renderings and braille embedding.

• The information is represented in a compact manner. Representing a character
with an eight-bit code is more compact than representing an image of the same
character.

Cascading Style Sheets

38



Figure 1: The ladder of abstraction. Illustration reprinted from Hayakawa [Hayakawa 1940].

Conversely, documents written in formats that are low on the ladder of abstraction
need less processing in order to be presented, they have less flexibility of
presentation, and they are less compact.

Chapter 2: Structured documents

39



Another important observation is that it is generally possible to transform
documents downwards on the ladder but much more difficult to move the other way
[Lie&Saarela 1999]. For example, graphical web browsers – in collaboration with the
windowing system – rasterize HTML documents into pixels and thereby move
information downwards on the ladder of abstraction. Optical Character Recognition
(OCR) software attempts to climb the ladder by turning images into text, but OCR
systems only work under certain conditions and are prone to errors. Similarly, it is
impossible to devise an algorithm that converts documents written in a
Turing-complete language due to the halting problem [Connolly 1994a].

In the context of web document formats, I believe the following criteria can be
used to establish the steps in the ladder of abstraction:

• Is the text human-readable? That is, if the document is presented to a human
reader, will he/she be able to read the document?

• Is the text machine-readable? That is, does the format have a notion of
numbered characters, or does it represent text as images – in which case the text
is not available.

• Is the logical order of text preserved? That is, do documents written in the
format have a notion of the logical reading order of the content?

• Is the document scalable? That is, can the document be zoomed in without
introducing visible artefacts?

• Is reflow possible? That is, can text be reflowed into lines, columns and pages of
different dimensions?

• Can the roles of the various text elements be represented? For example, can the
author mark part of the text as a headline, a paragraph, or perhaps as the name of
a variable in a computer program? Being able to distinguish between these roles
is important. When making documents available in braille, for example, some
text should be contracted (e.g. headlines), while other text should not (e.g.
variable names) [Lorimer 1996].

• Is the format device-independent? That is, can documents written in the format
be rendered into many different devices (e.g. printers, screens, braille printers,
and text synthesizers) or are documents intended for a single type of device?

• Does the format contain application-specific semantics? HTML is a general
document format that does not attempt to describe semantics from more
specialized fields, e.g. mathematics and chemistry, and therefore does not

Cascading Style Sheets

40



contain application-specific semantics. Formats that contain application-specific
semantics tend to be higher on the ladder of abstraction.

Table 1 shows the relative positions of various document formats on the ladder of
abstraction. Some notes to the table:

• GIF [GIF 1990] and PNG [PNG 1996] are bitmap image formats rather than
document formats, but images are often used to represent documents. Fax
transmission is a common example outside the web.

• PDF [Adobe 1993] is a document format developed by Adobe Systems. PDF is a
presentation-oriented format and has no concept of, for example, paragraphs and
headings. Many users have discovered this when trying to copy content from
PDF documents laid out in several columns. When selecting text, the selection
will span across multiple columns and thereby mix text from several parts of the
document into the same selection. Recent versions of PDF have introduced
functionality to retain a document's logical structure in PDF [Adobe 2001].

• XSL-FO refers to a document consisting of formatting objects as defined in the
XSL Recommendation [XSL 2001]. XSL-FO is discussed later in this chapter.

• XML [XML 1998], in which several of the emerging formats are written, is also
included in the table and refers to documents published using private XML
vocabularies where the semantics are not universally known.

• The rating of HTML is based on a best-case scenario where the author makes
use of semantic elements and does not alter the reading order of elements by
using features such as positioning or tables. It may be argued that most HTML
documents do not follow these conventions.

• MathML is a W3C Recommendation for mathematical notation
[MathML 1998].

Having established the ladder of abstraction as a measuring tool for structured
document formats, the next section discusses structured document systems in more
detail.

2.2 Structured document systems
Beginning around 1980, there was an active research community in the field of
electronic publishing and structured documents. The community published their
results in the proceedings of the Electronic Publishing conferences, in the journal

Chapter 2: Structured documents

41



Table 1: A comparison of document formats on the ladder of abstraction.

GIF, PNG
private XML
vocabulary

PDF XSL-FO HTML MathML

application-
specific semantics?

no no no no no yes

device-independent? no no no no yes yes

roles known? no no no no yes yes

text in logical order? unknown unknown no yes yes yes

reflow possible? no unknown no yes yes yes

scalable? no unknown yes yes yes yes

text machine-readable? no yes yes yes yes yes

text human-readable? yes yes yes yes yes yes

Electronic Publishing – Origination, Dissemination and Design [Electronic Publishing],
and Cambridge University Press published a series of books on the topic. Richard
Furuta lists many of the important works in Important papers in the history of document
preparation systems: basic sources [Furuta 1992].

The researchers generally agreed on the benefits of vendor-neutral document
formats to facilitate document exchange. The benefits of structured documents were
also well understood. There were, however, several approaches to structured
documents, and competing formats were developed. This section describes and
discusses four of them.

One line of development started in the late 1970's when Brian Reid developed
Scribe [Reid 1980]. Scribe pioneered the notion of structured documents and
enforced a distinction between logical markup and presentational templates in the
authoring process. The Scribe philosophy was continued in Leslie Lamport's LaTeX
which was first released in 1985 [Lamport 1986]. LaTeX is a macro package on top
of Donald Knuth's TeX program which serves as the low-level formatter
[Knuth 1984].

Open Document Architecture (ODA) is a set of ISO standards to facilitate the
electronic exchange of documents [ODA]. ODA documents can represent both the
logical and the presentational representation of a document.

Standard Generalized Markup Language (SGML) [SGML 1986] and its
predecessor GML were developed by Charles Goldfarb and colleagues during the
1970s and 1980s [Furuta, et al. 1982]. SGML became an ISO standard in 1986.

Cascading Style Sheets

42



These six systems (Scribe, LaTeX, ODA, SGML, HTML and XML) are
described in this section. Before discussing each one, it may be helpful to informally
list the perceived ambitions and achievements of the six systems. see Table 2.

For a more formal taxonomy of document formats, see The Origin of (Document)
Species [Khare&Rifkin 1998].

In addition to the achievements listed in Table 2, all systems should be credited
for having inspired authors and programmers to see the benefits of structured
documents.

The discussions of the various structured document systems below do not follow
a strict pattern. The systems vary widely in how well they are understood, how much
use they have seen, and how much information is currently available about each
system. The primary goal of the descriptions is not to perform a comparative analysis,
but rather to discuss aspects of these languages which this author finds interesting in
the context of style sheets.

2.2.1 Scribe

The Scribe system was developed in the late 1970s by Brian Reid at
Carnegie-Mellon University [Reid 1980]. Scribe is noteworthy for pioneering the
structured approach to authoring. It encourages authors to work with predefined
logical objects, and authors typically produce documents in their final form without
having to specify any of the formatting.

The Scribe system changed somewhat over the years. The discussion in this
chapter is based on Scribe as described in Scribe Introductory User's Manual from 1980
[Reid&Walker 1979]. The description attempts to give a general overview of Scribe,
and not all features are discussed.

2.2.1.1 A simple document

A Scribe document can be remarkably simple:

@Make(Text)

@Device(Diablo)

@Heading(Comrades and Strangers)

The example above uses three key concepts of Scribe: document types, commands, and
formatting environments. The first line chooses a particular document type (Text) from
a set of different document types. The second line is a command which specifies that

Chapter 2: Structured documents

43

Khare_1998


Table 2: The ambitions and achievements of the six different structured document systems.

Is primarily a
system to
define new
languages?

Has notion
of document
semantics?

Has notion of
document
presentation?

Enco-
ding

Reference
Level of
comp-
lexity

Main
achieve-
ment

Scribe no yes yes text implementation moderate
inspired
LaTeX

LaTex no yes yes text implementation moderate

de facto
format in
scientific
publishing

ODA no yes yes binary specification high
became ISO
standard

SGML yes no no text specification high

became ISO
standard,
inspired HTML
and XML

HTML no yes some text
specification &
implementation

moderate

universally
understood
hypertext
format

XML yes no no text specification moderate
syntactic basis
for emerging
formats

the document should be printed on a specific device. The third line specifies that a
certain string (“Comrades and Strangers”) is the heading of the document.

2.2.1.2 Document types

An installation of Scribe comes with a database of document types. The Scribe
documentation lists 11 different document types: Text (which is default), Article,
Report, Manual, Thesis, Brochure, Guide, Letter, Letterhead,
ReferenceCard, and Slides. A Scribe document typically starts by selecting which
document type to use:

@Make(Thesis)

The system administrator of the Scribe installation is expected to change the database
to fit local needs. For example, the formatting requirements of a dissertation vary
from one university to another, and the differences can be accounted for in the
Thesis document type. In theory, authors can write their dissertations without

Cascading Style Sheets

44



thinking about the formatting requirements and can concentrate rather on the
content.

Document types influence both the content model and the presentation of a
document. For example, the Thesis document type allows and expects the
TitlePage and various other environments to be used:

@Make(Thesis)

@Device(Diablo)

@Begin(TitlePage)

@TitleBox(Comrades and Strangers)

@CopyrightNotice(Michael Harrold)

@End(TitlePage)

It is possible for authors to change both the content model and the presentation of
their own documents, but doing so is cumbersome. Scribe encourages a mode where
a local administrator maintains control over – and responsibility for – the various
document types that are used in the organization.

2.2.1.3 Scribe commands

In addition to the content itself, a Scribe source file contains Scribe commands. These
correspond to what is known as markup in SGML/HTML/XML terminology.
There are approximately 35 commands. They can be divided into five main groups:

• Classification commands: @Begin and @End are used to mark the start and end of
environments, and @Make is used to declare a document type.

• Variable commands: To handle counters (@Set, @Tag), cross-references (@Ref),
and string variables (@String, @Value) that are expanded into, for example, date
and username.

• Visual commands: To mark page breaks (@NewPage), add vertical spacing
(@BlankSpace), handle tab stops (@Tabset, @TabDivide, @TabClear) or
change style (@Style) or font (@SpecialFont).

• Out-of-flow content commands: To label certain out-of-flow content, for
example footnotes (@Foot), running headers (@PageHeading) and footers
(@PageFooting).

• System commands: To import other files (@Import), specify the output device
(@Device), and output a message on the console (@Message).

The classification of commands into groups is done by this author.

Chapter 2: Structured documents

45



The Scribe documentation describes commands as non-procedural. However, some
of the commands are arguably procedural, most notably @BlankSpace and
@NewPage. In a structured approach, page breaks are attached to structured elements
(e.g. a heading) rather than using a separate command.3

Likewise, the @Style and @SpecialFont commands, which are used to set
stylistic and font preferences, can be questioned since they are not attached to
structured elements.

Another command that is easily challenged is @Device, which is used to specify
the “printing device for the output”. Web authors will not know what printing device (if
any) the user has. Scribe, however, was used mostly with paper as the final form, and
including commands like @Device is a pragmatic choice.

2.2.1.4 Formatting environments

The most frequently used commands in Scribe are @Begin and @End which,
respectively, mark the beginning and end of formatting environments. A formatting
environment corresponds roughly to an element in SGML/HTML/XML
terminology, and the @Begin and @End commands correspond to tags. Formatting
environments are also referred to as named formatting environments or just environments.

Here is a simple fragment from the Scribe documentation4:

@Begin(Quotation)

On mechanical slavery, on the slavery of the machine,

the future of the world depends.

@End(Quotation)

Text inside the Quotation environment is given extra space on all sides. Text can
also be placed in environments through a shorthand syntax:

@Quotation(On mechanical slavery, on the slavery of the machine,

the future of the world depends.)

Environments can be nested inside each other:

@Quotation(On mechanical slavery, on the slavery of the @i[machine],

the future of the world depends.)

The example above also shows how different pairs of characters can be used in
delimiters. The outer delimiters use () characters, while the inner delimiters use [].

3 Scribe also supports the structured approach through the Pagebreak environment
Attribute.
4 The quote is from Oscar Wilde: The Soul of man under Socialism, 1895

Cascading Style Sheets

46



All Scribe systems offer a common set of environments for authors to use. See
Table 3.

Keeping in mind how important Scribe has been in the promotion of logical
markup, it is noteworthy that around half of the environments have presentational
rather than logical roles.

Not all structure in a Scribe document must be marked up explicitly. Scribe is
able to identify paragraphs from the white space in the source document. Consider
this example:

@begin(enumerate)

The first item of three.

The second item.

The last item.

@end(enumerate)

The resulting enumerated list consists of three items. The Multiple environment
can be used to override the automatic structure detection:

@begin(enumerate)

The first item of three.

@begin(multiple)

The second item.

The second item has two paragraphs.

@end(multiple)

The last item.

@end(enumerate)

One benefit of automatic structure detection is that markup in source documents
can be minimized.

Table 3: Common environments offered in Scribe.

Environment
Corresponding HTML
element

Corresponding CSS
functionality

Comment

B B font-style: bold

C font-style: small-caps

Center CENTER text-align: center

Description DL
this environment seems to provide
formatting similar to HTML's DL
element

Chapter 2: Structured documents

47



Environment
Corresponding HTML
element

Corresponding CSS
functionality

Comment

Display
this environment honors line breaks
and adds extra left margin

Enumerate UL

Example PRE adds extra margins

FileExample PRE

FlushLeft text-align: left

FlushRight text-align: right

Format use for tabular formatting

G uses a Greek font

Group page-break: avoid

Heading H2

I I

Itemize UL

MajorHeading H1

Multiple DIV see example below.

O text-decoration: overline

P BI
font-weight: bold; font-style:
italic

ProgramExample
for examples of computer programs
and uses fonts accordingly

Quotation BLOCKQUOTE margin: 1em adds margins on all sides

R font-family: serif ordinary roman typeface

Subheading H3

T tt font-family: monospace

Text The default environment

U U text-decoration: underline underlines all nonblank characters

UN underline letters and digits only

UX
underline all characters, including
spaces

Verbatim
used for tabular formatting with
monospace fonts

Verse
intended for poetry and other text
where white space should be honored

W white-space: nowrap
treats text as one word, i.e., an
unbreakable sequence of characters

2.2.1.5 Changing and adding environments

As mentioned above, the Scribe database of document types and formatting
environments is maintained by a system administrator. However, an author can also
change or add environments to fit his needs. Here is a simple example:

@Modify(Description, Leftmargin 0.5in, Indent -0.5in)

In the above example, the left margin and indentation of the Description
environment are changed. The @Modify command must appear in the beginning of
the document. New environments can also be defined:

Cascading Style Sheets

48



@Define(InsetHead=Subheading, Leftmargin 0.5in)

In the above example, the InsetHead environment is created. It copies all properties
from Subheading except for the left margin. Environments can also be created from
scratch. The documentation discourages this but specifies the general form:

@Define(Newname, <list of attribute-value paris>)

Also, the documentation lists the set of around 40 properties that define the
presentation of environments.

In effect, the definition of environments in Scribe encompasses both style sheets
and SGML's Document Type Definition (DTD) in one.

2.2.1.6 Scribe in context

Scribe pioneered the distinction between structure and style and allowed authors to
write documents without thinking about the formatting of the documents. The
database of document types and formatting environments is maintained by a system
administrator, but authors who want to modify environments or add their own are
free to do so. As such, Scribe offers the best of HTML (there is a default set of tags
and conventions on how to present them), CSS (there is a default set of
presentational conventions that can be modified), and XML (new elements can be
created). As such, Scribe may have been a better inspiration for HTML than SGML.
It is also noteworthy that Scribe provided this functionality more than 15 years
before it became available to authors on the web.

Scribe is no longer available for authors to use, but the historical impact of Scribe
on the development of structured documents is significant. There are no references
to Scribe in W3C's overview of historical systems influencing the the development
of HTML [W3C 2003], but the developers of SGML do reference Scribe
[Goldfarb 1991] which makes it an indirect influence. Scribe's greatest achievement
may have been its influence on LaTeX. Leslie Lamport, who created LaTeX,
mentions Scribe in the first edition 5 of his book [Lamport 2003]:

5 Lamport removed the reference to Scribe in the second edition of his book for legal reasons.
He writes “I removed all mention of Scribe in the 2nd edition of the LaTeX book because I was informed
that the person who bought Scribe from Brian Reid would have loved to find someone he could sue for
infringing Scribe's patents or copyright or whatever. I disliked not crediting Brian, but I didn't want to
tempt the legal fates.” [Lamport 1986].

Chapter 2: Structured documents

49



Fundamental to LaTeX is the idea of a document style that determines how the document
is to be formatted – an idea stolen from Brian Reid's Scribe text formatting system.

LaTeX is discussed in the next section.

2.2.2 LaTeX

The TeX typesetting system was developed by Donald Knuth “for the creation of
beautiful books” [Knuth 1984]. The work was started in the late 1970s and TeX
became the preferred format for scientific publishing in the 1980s. Designed by a
mathematician, TeX has special features for formatting mathematics but its
formatting model is suitable for many types of documents. TeX has been used
primarily in environments where paper is the final target. Commands in TeX
typically describe spatial relationships between elements and thus are presentational.
Here is a simple TeX fragment:

{\narrower\smallskip\noindent

This paragraph will have narrower lines than surrounding paragraphs.

\smallskip}

Many of the commands in TeX are macros that are expanded into basic commands
by the TeX interpreter. TeX allows users to create their own macros, and several
macro packages for TeX have been published. LaTeX is one such macro package
which enables authors to create structured document formats.

LaTeX's author, Leslie Lamport, was a Scribe user who wanted to “make LaTeX a
sort for Scribe on top of TeX” [Lamport 2003]. Many of features in LaTeX were copied
from Scribe but, as LaTeX developed, some Scribe features were dropped and some
new functionality was added. Here is a simple LaTeX fragment:

\documentclass{book}

\title{Comrades and Strangers}

\author{Michael Harrold}

\begin{document}

\maketitle

\chapter{Red Carpet in Paradise}

\end{document}

The first line in the above example declares that the document will eventually
become a book. Other document classes include: report, letter, article and slides.
The choice of document class will influence the final presentation of the document,
as well as the type of elements (or environments as LaTeX and Scribe calls them) that
are available. For example, the chapter element, used further down, is available in a

Cascading Style Sheets

50



book but not in an article. The next two lines declare the title and author of the
publication. The first part of the code – until the document itself starts – is called the
preamble and is similar to the HEAD element in HTML.

The document body is contained in the document environment. The
\maketitle command is a common way to start documents; depending on the class
of document and the meta-information declared in the preamble, a proper title will
be generated. The last element in the above example is a chapter heading.

There are many similarities between Scribe and Latex:

• Like Scribe, LaTeX's functionality can be grouped into three: document classes
(called document types in Scribe), commands and environments (also called formatting
environments in Scribe).

• Many of the environment names are the same, for example: enumerate,
itemize, quotation, description, verbatim, center, flushleft and
flushright.

• Both languages are tied to a specific formatter and have not been proposed as
candidates for standardization.

• Both Scribe and LaTeX provide a base set of document classes and environments
that can be extended by local system administrators or authors.

• The ambitions of the two systems are roughly the same: It should be possible to
author structured documents without having to describe the presentation of
documents, while still having the documents printed neatly onto paper in the
end.

There are also notable differences between the two systems:

• The syntax is different; LaTeX uses different delimiters than does Scribe.

• LaTex offers access to TeX commands. This makes it possible to control the
formatting of document at a very low level, but it also makes it difficult – if not
impossible – to convert LaTex documents into other formats.

LaTeX has been a highly successful authoring system that has seen much use,
primarily in academic environments. Due to its success, LaTeX has probably done
more for structured documents than any other language, bar HTML.

Chapter 2: Structured documents

51



2.2.3 Open Document Architecture (ODA)

Open Document Architecture is a set of ISO standards that describe formats for
representing and exchanging structured documents. The efforts started out under the
name “Office Document Architecture” in the 1980s, and the name changed to “Open
Document Architecture” in the 1990s when results of the efforts were published as ISO
standards [ODA][Appelt 1991][Rosenberg et al. 1991].

Like ISO's OSI [OSI] model, ODA has been highly influential without having
seen much use itself. ODA, along with the other systems described in this chapter,
championed the idea of separating the logical representation of content from its
physical presentation. However, ODA went several steps further than the other
systems. Unlike SGML and XML, ODA also describes the presentation of
documents. Compared with LaTex, Scribe and HTML, ODA goes further by, for
example, also standardizing image formats.

ODA was developed by an industrial consortium where, among others, IBM,
DEC, Unisys, Bull and Unisys were members. Also, many researchers in academic
institutions took part in the development of ODA. Around 1991 the community
was highly optimistic about the future of ODA [Sherman 1991]:

ODA is one of the application-layer standards in the OSI model that is starting to grow
and flourish. ODA is being adopted in a variety of other standards to meet an enlarging
set of needs.

However, ODA never became the success that its proponents hoped for, and was
never used beyond pilot projects. There are several reasons for this. First, ODA is a
complex set of specifications. It is difficult to understand the specifications and it is
difficult to write software to support them. Second, ODA and SGML were
perceived to be in competition with each other and the structured documents
community never fully backed ODA. The difference in scope between ODA and
SGML is significant: ODA is a document format that describes the syntax, structure
and presentation of documents, while SGML is a system for defining the syntax of
markup languages. Still the two were perceived to be in conflict with each other
[Watson&Davis 1991]. Below is a retrospective remark made by the chair of the
committee (ISO JTC1 SC) which defined the SGML standard [Mason 2001]:

The SGML/ODA Wars occupied entirely too much of our time and promoted an
atmosphere of paranoia on the parts of several of our members. In the long run, ODA died
and SGML won, but by then the forces that led to XML were already pushing people out
of SC34. The technical effect on SGML was mixed: it brought us both CONCUR and
Architectural Forms. The human effect was much more harmful.

Cascading Style Sheets

52

Watson_1991


The fact that ODA has never been used makes it difficult to review. Few ODA
documents have been created because the software to do so was never written.
Unlike the other systems described in this chapter, ODA uses a binary encoding and
examples are therefore hard include in textual descriptions of the standards. Also,
ODA is hard to review since the specifications are not freely available.

Instead of attempting a scholarly review of ODA, I note its role in history and
challenge researchers after me to do the review I believe ODA deserves.

2.2.4 Standard Generalized Markup Language (SGML)

As mentioned in the previous section, the Standard Generalized Markup Language
(SGML) is not a document format. Instead, SGML is a system which is used to
create new document formats. In other words, SGML is not – despite its name – a
markup language in itself, but is used to define other markup languages.

The first working draft of SGML was published in 1980 [SGMLUG 1990] and
SGML became an ISO standard in 1986 [SGML 1986].

SGML is based on GML (Generalized Markup Language) which was developed at
IBM over a period of years in the early to mid 1970s [Furuta, et al. 1982]. In
[SGMLUG 1990] the people and motivation behind GML is described:

Together with Edward Mosher and Raymond Lorie [Charles Goldfarb] invented the
Generalized Markup Language (GML) as a means of allowing the text editing,
formatting, and information retrieval systems to share documents

GML became available for general use in 1978 [Furuta, et al. 1982]. A GML
document looks quite different from an SGML document due to the former not
using the now familiar angle brackets to denote tags. Here is a simple fragment from
[Furuta, et al. 1982]:

:body.

:h2.The Formatting Problem

:p.In order to discuss formatters and their functions...

One of the GML creators, Charles Goldfarb, continued the work towards SGML
[SGMLUG 1990]:

After the completion of GML, Goldfarb continued his research on document structures,
creating additional concepts, such as short references, link processes, and concurrent
document types, that were not part of GML but were later to be developed as part of
SGML.

Chapter 2: Structured documents

53



It is noteworthy that none of the SGML features mentioned in the above quote has
seen much use. One of them, the LINK feature (described below), was motivated by
the need to compete with ODA by offering a way to attach presentational
information to documents.

SGML is a complex standard and it is beyond the scope of this thesis to give an
overview of all features. Below is a description of three features that are interesting in
the context of style sheets; all three features can potentially carry stylistic
information.

2.2.4.1 Document Type Definition (DTD)

A Document Type Definition (DTD) is a set of rules defining the syntax of a
markup language. DTDs are central to SGML and all SGML-based markup
languages have a DTD which describes elements, attributes, and entities – and the
relationship between them. Here is a simple fragment from the HTML4 DTD:

<!ELEMENT UL - - (LI)+>

In the above example, the UL element is declared to require start and end tag (the
two dashes, respectively), and the content model is set to (LI)+. The content model
describes what kind of content is allowed within the declared element. In the above
example, the plus sign indicates that UL elements can contain one or more LI
elements. The fragment below adds more information about the LI element:

<!ENTITY % inline "A | #PCDATA">

<!ELEMENT LI - O (%inline)*>

The first line of the above example declares an entity referred to in the second line:
the LI element must have a start tag, but the end tag is optional. The LI element
contains inline content, which – according to the first line – is A elements or
#PCDATA. #PCDATA means textual content.6

The DTD is also used to declare attributes on elements.
The HTML4 DTD uses entity names like heading, inline and block to group

various elements. These names, however, do not signify any meaning; from SGML's
perspective they are random strings. In the minds of the DTD creators, however, the
names have a meaning that conveys logical roles as well as presentational
information.

6 In HTML4, the content model for the LI is slightly more complex.

Cascading Style Sheets

54



Although DTDs, by design, only convey information at a syntactical level, one
could easily envision adding presentational information there. For example, this
extended syntax would describe the content model, along with information about
preferred fonts:

<!ELEMENT UL - - (LI)+ 11pt sans-serif>

The Scribe system, as discussed above, takes this approach when defining new
environments. Also, the SSP style sheet proposal, discussed in Chapter 4, combines
presentational and syntactical information in one.

2.2.4.2 Processing Instructions

A Processing Instruction (PI) is a syntactic construct in SGML that can be used to
hold information about how the document should be processed, including how it
should be formatted. In a message to www-talk [Connolly 1994b], Dan Connolly
proposed to use PIs to describe the formatting of HTML documents:

I suggest we introduce a whole set of processing instructions so that folks can mark up the
formatting of their document without affecting the structure. For example, rather than the
<BR> element, I'd suggest a <? linebreak> processing instruction, and a &br; entity as a
shorthand form.

SGML puts few restrictions on the content of processing instructions, and a wide
range of processing instructions are possible:

<? the next element should be green  >

<? background=white >

<? p { color: black } >

A W3C Recommendation describes how PIs can be used to link to style sheets from
XML documents. See the section on XML below.

2.2.4.3 LINK

The SGML specification defines two types of LINK features: implicit LINKs and
explicit LINKs. The latter are poorly understood and the discussion in this section
pertains only to implicit LINKs.

Like processing instructions, the LINK feature was added to aid the processing of
SGML documents. Like PIs too, one of the uses for the LINK feature is to add
formatting information to SGML documents. There are, however, several
differences between PIs and LINKs:

Chapter 2: Structured documents

55



• LINKs are placed in separate external link declarations, rather than being
embedded into the document.

• LINKs define the processing of a certain element, rather than just being a
placeholder for any processing information.

The main purpose of the LINK mechanism is to attach attributes to elements. Here
is a simple excerpt from a link declaration:

<!LINK #INITIAL  table [ ALIGN="right" ]>

The link declaration above would add the ALIGN="right" attribute to all table
elements.

A slightly more advanced example shows how LINKs can be used to add
attributes in a contextual manner:

<!LINK #INITIAL  ul  #USELINK uldef

ol  #USELINK oldef>

<!LINK uldef     li  [ mark="bullet" ]>

<!LINK oldef     li  [ mark="digit" ]>

Consider this simple document:

<UL>

<LI>number unknown

<OL>

<LI>number one

<LI>number two

</OL>

</UL>

When the link declaration above is applied to the above document, it produces the
following document:

<UL>

<LI mark="bullet">number unknown

<OL>

<LI mark="digit">number one

<LI mark="digit">number two

</OL>

</UL>

As can be seen from the example above, the LINK feature has some of the properties
of a style sheet language (namely syntax and selectors, as described in Chapter 3).
Also, the LINK feature is a generic mechanism that can be used to distribute any
kind of information as long as the information can be represented in attributes.

Cascading Style Sheets

56



However, the LINK feature lacks a notion of formatting. For example, no
properties, values or formatting model are proposed. Therefore, the LINK feature
cannot be considered a style sheet language.

2.2.4.4 SGML in context

SGML is one of the standards that has most influenced the web, and both XML and
HTML owe much of their design to SGML. SGML successfully brought important
issues regarding document authoring, storage and exchange formats to the attention
of the information technology communities. Especially, SGML emphasized:

• logical markup, rather than procedural markup; and

• that information storage and exchange formats must be separated from software
and hardware to ensure that data will survive computer systems.

Outside of a limited community, however, SGML never became the success that its
proponents hoped for. This author believes there are several reasons for this:

• The SGML standard became too complex. The SGML handbook, which is an
annotated version of the SGML standard, has 664 numbered pages
[Goldfarb 1991]. Though this includes tutorials and other non-essential texts, it
is yet an indication of how the complexity of SGML. Only a handful of experts
are able to read and understand the full SGML specification. In addition to not
being understood, many of the advanced features were not supported by
implementations.

• SGML only partially solved the problems for which its users needed solutions. It
can successfully define markup languages, but few people actually do this.
Rather, authors need a vocabulary of elements and ways to including graphics.
SGML did not attempt to solve these problems.

• Lack of style sheet language. When SGML became an ISO standard in 1986, no
standardized style sheet language was available to format SGML documents. The
Formatting Output Specification Instance (FOSI; see the next chapter) soon became
available but was considered a temporary solution while waiting for Document
Style Semantics and Specification Language (DSSSL). It took approximately 10 years
before DSSSL was finalized in 1996. A simple solution based on an expanded
DTD or PI syntax, as discussed above, may also have made SGML documents
more presentation-friendly.

Chapter 2: Structured documents

57



It may be too early to pass judgement on SGML, but this author believes SGML's
main achievement will be that it inspired HTML and XML.

2.2.5 HyperText Markup Language (HTML)

The HTML specification is, along with HTTP and URL specifications, one of the
basic building blocks of the web. HTML has had a far-reaching impact on how
electronic content is authored, stored, transmitted and processed. The design of
HTML is probably one of the main reasons for the success of the web.

This section discusses HTML's design and development with regard to style
sheets.

2.2.5.1 HTML's original design

The origin of HTML is described in W3C's document Some early ideas for HTML
[W3C 2003]:

[In 1989] many people were using TeX and PostScript for their documents. A few were
using SGML. Tim realized that something simpler was needed that would cope with
dumb terminals through high end graphical X Window workstations. HTML was
conceived as a very simple solution, and matched with a very simple network protocol
HTTP.

Indeed, the original design of HTML was simple. The first publically available
description of HTML was a document called HTML Tags [Berners-Lee 1991a],
which was announced and annotated in one of the first messages
[Berners-Lee 1991b] on the www-talk mailing lists in October 1991. I refer to this
document as “HTML-0”. It describes 22 elements that make up the initial design of
HTML. In order of appearance the elements are: TITLE, NEXTID, A, ISINDEX,
PLAINTEXT, XMP (described indirectly), LISTING, P, H1, H2, H3, H4, H5, H6,
ADDRESS, HP1, HP2, DL, DT, UL, MENU and DIR. Thirteen of these elements still exist
in HTML4 [HTML4 1997], three elements have been deprecated (ISINDEX, MENU,
DIR), and six elements have been removed (NEXTID, PLAINTEXT, XMP, LISTING,
HP1, HP2).

It is noteworthy that HTML-0 did not include any presentational elements.
That is, HTML-0 consisted only of logical elements. This crucial design decision
is confirmed in a comparison of MIME's rich text feature [Borenstein 1994] and
HTML [Berners-Lee 1992a]:

Cascading Style Sheets

58



Comparing MIME's rich text and HTML, I see that we lack the characetr formatting
attributes BOLD and ITALIC but on the other hand I feel that our treatment of logical
heading levels and other structures is much more powerful and has turned out to provide
more flexible formatting on different platforms than explicit semi-references to font sizes.
This is born out by all the systems which use named styles in preference to explicit
formatting, LaTeX or other macros instead of TeX, etc etc.

Style sheets are mentioned once in HTML-0 in the description of the P element:

This tag indicates a new paragraph. The exact representation of this (indentation, leading,
etc) is not defined here, and may be a function of other tags, style sheets etc.

Thus, the concept of style sheets was known to the designer of HTML. The
program library libwww [Nielsen&Lie 1994] which was CERN's freely available
implementation of HTTP and HTML, supported client-side style sheets. That is,
style sheets were hard-coded in the client to support the presentation of HTML
documents and were not considered to be resources to be put on the web. As such,
style sheets played a minor role in the initial design of the web.

This view is supported by the fact that there was no discussion on style sheets on
the www-talk mailing list from its inception in October 1991 until Robert Raisch
put forward his proposal (RRP, which is discussed in the next chapter) in June 1993
[Raisch 1993a].

2.2.5.2 Structure versus style

Although style sheets per se were not discussed on www-talk, the term styles was
used a few times in the context of HTML design. In an early message to www-talk,
Berners-Lee argued that a nested structure would have been preferable to the
relatively shallow structure that HTML-0 offered [Berners-Lee 1991b]:

In writing a new generic parser, I wondered whether your text object will store the nested
structure of a document. At the moment, the document is a linear sequence of styles: you
can't have lists within lists, etc. Ideally, it would be able to handle this - although its more
difficult for a human writer to handle when formatting the document. I would in fact
prefer, instead of <H1>, <H2> etc for headings [those come from the AAP DTD] to
have a nestable <SECTION>..</SECTION> element, and a generic <H>..</H>
which at any level within the sections would produce the required level of heading.

This issue is reiterated in another message eight months later [Berners-Lee 1992b]:

So if we went for a nestable HTML which would be cleaner for those who apreciate
recursion, we would have to have a hypertext editor which made the structure visible. I
don't have experience enough to know whether real information providers (group
secretaries, for example) would be into generating nested elements – maybe the styles are
useful to keep as the current `user interface metaphor' of word processors.

Chapter 2: Structured documents

59



The statements above argue that elements in HTML should not generally be
nestable, even if nestable structures are “cleaner”. One of the arguments against
nestable elements is that they do not combine with “a linear sequence of styles”.
Berners-Lee is making these statements after having implemented an HTML parser
and formatter of the libwww [Nielsen&Lie 1994] library. The percieved conflict
between nestable elements and styles is probably due to limitations in the
implementation. CSS later addressed this issue by introducing contextual
selectors.

2.2.5.3 HTML and SGML

Like style sheets, SGML was known to the designer of HTML but played a minor
role in the sense that HTML-0 was not formally specified in terms of SGML. To
some extent, HTML-0 was incompatible with SGML [Berners-Lee 1991b]:

<PLAINTEXT> is used to indicate that the rest of the file is in fact just ASCII. It turns
off SGML parsing completely. It's a fudge for the moment, until we have the document
format negociation.

Berners-Lee also discouraged browser implementors from using strict formal
methods when processing HTML documents [Berners-Lee 1993c]:

I support Marc completely in his decision to make Mosaic work as best it can when it is
given invalid HTML. The maxim is that one should be
- conservative in what one does
- liberal in what one expects.

This author believes the above message was unfortunate. If Mosaic had been stricter
in its parsing of incoming HTML, the markup on the web may have been much
cleaner than it is today.

The philosophy of SGML was, however, a source of inspiration. In a document
describing the design of HTML-0 titled Design Constraints, Berners-Lee writes
[Berners-Lee 1992d]:

It is required that HTML be a common language between all platforms. This implies no
device-specific markup, or anything which requires control over fonts or colors, for example.
This is in keeping with the SGML ideal.

Unlike style sheets, SGML quickly became a topic of discussion on www-talk. Of
31 messages posted to the list in 1991 (the list was started in October of that year)
eight mentioned SGML. In 1992, 466 messages were posted to the mailing list, of
which 138 mentioned SGML.

Cascading Style Sheets

60



Dan Connolly initiated many of the discussions by arguing that HTML should be
defined in terms of SGML. In June 1992 he published a DTD for HTML
[Connolly 1992]. In the accompanying message he argued why this was necessary:

We need an SGML DTD so that we can parse HTML using something besides the
public implementation of WWW, and so that we can verify documents converted from
other authoring systems such as GNU info, Andew's EZ, or FrameMaker.

Almost two years later, Connolly reached the same conclusion in a message titled
Toward Closure on HTML [Connolly 1994b]:

The costs and benefits of basing using [sic] SGML to define HTML have been discussed
at great length. Simplifications have been suggested [...] but at this point, it appears that
there is a clear requirement that an HTML document shall be a conforming SGML
document.

Connolly's message generated heated discussions on www-talk and many resisted the
idea of making SGML an integral part of the web. The resistance to SGML was
based on two main arguments. First, SGML was perceived to be overly complex
[Raggett 1993b]:

I have a feeling that most people find the SGML DTD rather hard to follow in detail.
Goldfarb's account of SGML almost seems to go out of its way to make life difficult for
the newcomer.

Second, it was argued that introducing SGML at this stage was unrealistic as it did
not reflect the state of the web at the time [Davis 1994] :

Dan, I don't intend this as a flame, but you need to face reality, by which I mean you
need to look at what people ACTUALLY do, not what you WISH they did. As you
observe, people don't use an SGML parser to validate their documents. There is no reason
to think then that they will ever start. That's reality.

Despite the controversy, HTML2 was formally defined in terms of SGML and was
published as RFC 1866 in November 1995 [HTML2 1995].

2.2.5.4 HMML, HTML+ and HTML3

While HTML2 slowly moved towards becoming standardized, the www-talk
community busily proposed new features for HTML. Among the most popular
features was support for images and multimedia [Berners-Lee 1993a]:

Chapter 2: Structured documents

61



HMML is in fact already an extension of HTML for multimedia from O'Reilly. There
are similar extenstions from NCSA. We just have to standardize on them for the next
DTD which we define. HTML was checkpointed so as not to make a moving target.
NCSA's (released) Mosaic for X handles embedded images in the hypertext, as does
O'Reilly's (unreleased) Viola.

The above quote raises several important questions about the development of
markup languages for the web: who should be in charge of development, what
features should be supported, and what should the language be called? The HMML
acronym stands for HyperMedia Markup Language [Adie 1993] and mentioning this
indicates a preference for a new language with better support for multimedia.

A few days later, Dave Raggett announced that he was editing the next version of
HTML [Raggett 1993a]:

In a recent phone conversation, Tim Berners-Lee suggested I take over editing a new
DTD for extensions to the current HTML spec. Don't get worried - the existing HTML
tags will continue unchanged.

Raggett expresses a preference for continuing to use the “HTML” name as well as
the existing HTML elements. A month later he explains the name issue this way
[Raggett 1993f]:

HMML is the name of an internal and experimental DTD developed by Pei Wei.
However, things became confused when Tim Berners Lee started using "HMML" for the
proposed replacement for the original HTML DTD. To avoid confusion I am calling the
new DTD "HTML+" which also emphasises that it is a superset of the current format.

Further, he emphasizes the need for backwards compatibilty with HTML in the
sense that existing HTML elements would “continue unchanged” [Raggett 1993e]:

My main objective is backwards compatibility with existing HTML.

Dale Dougherty of O'Reilly wanted to create a new acronym and a new language
[Dougherty 1993]:

I'd like to see some discussion about HMML being backwards compatible with HTML. I
think it's a mistake to set that up as a design objective. It also raises questions about how
WWW parsers are going to work in the future. I would prefer to see HTML as a frozen
thing; and HMML as the next generation.

However, the discussion Dougherty had hoped for did not happen and Raggett
published a backwards compatible specification in May 1993. The specification was
referred to as HTML+ [Raggett 1993d] and this name was used until mid-1994
when the proposal was renamed HTML 3.0.

Cascading Style Sheets

62



HTML+ introduced several new concepts which later became part of HTML; the
most important of which are tables and forms [HTML+ 1993]. Among the features
that HTML+ proposed but which have not become part of HTML are mathematical
formulae.

HTML+ added several features to improve the presentation of documents. Here
are some examples:

• The proposed FIG element accepted the align attribute which allowed text to
flow next to the figure.

• The FOOTNOTE element allowed footnotes to be marked up.

• The MARGIN element indicated side notes.

Most of the additional markup that HTML+ offered was logical in nature but came
with a suggested presentation that had the potential to enrich the presentation of
HTML documents.

HTML+ did not support style sheets. However, in a A Review of the HTML+
Document Format [Raggett 1995a], Dave Raggett foresees that style sheets will be part
of HTML+ in the future:

Information providers are interested in making their documents appear in a particular style
which differentiates them from other information providers. Work is under way to see how
HTML+ could support style information without limiting platform independence. Style
hints could be expressed as part of the document head and cover aspects such as font
families, text color and size, and the use of whitespace around elements. The use of
images, and the opportunity to set the color and texture of the background offer further
ways of creating a unique style.

As HTML+ progressed, it was renamed HTML 3.0. At this point, the work on style
sheets for the web had progressed and HTML 3.0 introduced functionality for
associating documents with style sheets [Raggett 1995b]:

HTML 3.0 relies on linked style info to give authors control over the appearence of
documents. Such info is placed in a linked style sheet, or as overrides in the HTML
document head, using the STYLE element. The generic CLASS attribute can be used to
subclass elements when you want to use a different style from normal, e.g. you might use
<h2 class=bigcaps> for headers with enlarged capital letters.

HTML+ and HTML 3.0 never became officially sanctioned versions of HTML, but
the specifications pioneered functionality that, subsequently, has seen extensive use
on the web.

Chapter 2: Structured documents

63



2.2.5.5 HTML 3.2

Several implementors considered HTML 3.0 to be too far removed from their own
implementations and wanted the next HTML specification to codify current
behavior rather than engineering new solutions. This conflict was well-known from
the development of HTML 2.0. The specification itself describes the development:

HTML 3.2 aims to capture recommended practice as of early '96 and as such to be used
as a replacement for HTML 2.0 (RFC 1866). Widely deployed rendering attributes are
included where they have been shown to be interoperable.

HTML 3.2 also makes two references to the non-official HTML 3.0, but most of
the novel features from HTML 3.0 were not included. The naming of the
specification, therefore, became an issue: giving the specification a name in the 2.x
series would probably have been technically more correct, but marketing a lower
number would have been difficult. On the other hand, giving the specification a new
major number (e.g. 4.0) would promise more than the specification could deliver.
Therefore, a compromise solution was reached at “3.2”.7

HTML 3.2 became a W3C Recommendation in January 1997, barely a month
after CSS1 achieved the same status. The time gap was not long enough for HTML
3.2 to fully describe the impact of style sheets, but the DTD included a STYLE
element that made it possible to validate documents that had style sheets in them
[HTML 3.2 1997]:

SCRIPT and STYLE are included to smooth the introduction of client-side scripts and
style sheets. Browsers must avoid showing the contents of these element Otherwise [sic]
support for them is not required.

HTML 3.2 was the first HTML specification to be published as a W3C
Recommendation. As such, it was an important test to see how well different W3C
member organizations, including Netscape and Microsoft, could work together to
achieve consensus on a technical specification.

2.2.5.6 HTML 4

HTML4 became a W3C Recommendation in December 1997 [HTML4 1997], less
than a year after HTML 3.2 had achieved the same status. HTML4 added important
functionality, especially in the area of internationalization.

7 An excerpt from the minutes of the discussions in W3C's Editorial Review Board is included
in the Acknowledgementes of this thesis.

Cascading Style Sheets

64



HTML4 is the first standardized version of the HTML language which describes
how style sheets and HTML documents are combined. Three mechanisms are
described:

• the STYLE element

• the STYLE attribute

• the LINK element

These mechanisms had previously been described in a separate W3C Working Draft
[WD-style 1997] and to some extent in the CSS1 specification but, without an
official recognition in HTML it was impossible for authors to use web style sheets
while adhering to W3C Recommendations.

2.2.5.7 HTML in context

HTML has developed significantly from the first version made available in 1991.
Along the way, much functionality has been added while ensuring backwards
compatibility. The principle of encouraging logical, rather than presentational
markup has remained despite resistance from implementors and authors. As a
consequence, style sheets became necessary and later found their place on the web.

Also, HTML has resisted the temptation of climbing too high on the ladder of
abstraction. Tim Berners-Lee describes the difficult balancing act in a message to
www-talk [Berners-Lee 1993b]:

HTML and HTML [sic] have a status in between a formatting language and a spacific
application. As a delivery language for very wide use, the tags must be generic thimselves.
STRONG emphasis or EMphasis is not a formatting instruction, it is semantic. But it
is not as semantic as PROHIBITION or LOCSHELFNUMBER or
MICASHEETTHICKNESS.
HTML+ must like HTML refrain from falling into eiter trap, of being too related to
markup, or of being too related to a specific application.

(I believe he meant to write “HTML and HTML+” in the first sentence.)
This author believes that HTML has the right level of abstraction: high enough to

support presentation on a wide range of devices, and low enough for people to grasp
easily the meaning of elements. Unfortunately, however, HTML is often authored at
a too low level of abstraction.

HTML has had a profound impact on how electronic information is authored,
stored, transmitted and processed. If HTML had not been successful, we might still
have been living in the “bad old days” [Berners-Lee 1996]:

Chapter 2: Structured documents

65



Anyone who slaps a 'this page is best viewed with Browser X' label on a Web page
appears to be yearning for the bad old days, before the Web, when you had very little
chance of reading a document written on another computer, another word processor, or
another network.

2.2.6 XML

The use of HTML and the web grew rapidly around 1995. Many proponents of
SGML argued that HTML was a temporary solution and that the future of web
publishing was SGML. This excerpt from a message posted on the comp.text.sgml
newsgroup is representative of this view [Nicol 1995]:

... eventually, HTML will be used primarily for publishing home pages and whatnot,
and (SGML|RTF|PDF|whatever) will be used for everything else. Large documents
with long lifespans will almost certainly be in SGML (or something similar)

However, many in the SGML community also realized that SGML, as described in
[SGML 1986], was not suitable for use on the web. In June, 1996, W3C announced
to its members the formation of a “Web-SGML activity” [Connolly 1996]. From the
announcement:

The overall goal of the activity is to work in collaboration with ongoing efforts in
ISO/IEC JTC1, SGML Open, and the IETF to provide the pieces needed to complete
the array of specifications that will enable Web publishing using generic SGML.

The term “generic SGML” refers to generic markup that uses tags unknown to the
recipient.

2.2.6.1 The SGML Working Group charter

In his first message to the SGML Working Group, the chair Jon Bosak listed three
expected deliverables from the group [Bosak 1996b]. First, the group wanted to
produce a form of SGML designed for Internet transmission:

The specification of an application profile defining a form of SGML designed for Internet
transmission and processing by user agents. For purposes of discussion, the format thus
defined has been given the temporary working name of Extensible Markup Language
(XML).

Second, the group was to work on a specification of “basic hypertext link types for
XML” [Bosak 1996b]. This work later turned into XLink [XLink 2001] and is not
discussed further in this thesis.

Third, the goal was to make DSSSL work in an Internet context [Bosak 1996b]:

Cascading Style Sheets

66



The specification of extensions and public text needed to make DSSSL work in an
Internet context. For example, a mechanism needs to be added to DSSSL to enable text
to flow around objects.

It is noteworthy that the group was chartered to address all three areas. Previously,
the SGML community had organized for work on each of these three areas to be
done by different groups which had led to specifications not being synchronized. By
assigning one working group to perform the work in all three areas, one coherent set
of specifications could be produced in the same time frame.

In the end, however, the work on linking and style sheets ended up in separate
working groups and their respective specifications were finalized more than three
years after XML became a W3C Recommendation [XSL 2001][XLink 2001].

2.2.6.2 The XML specification

The first public XML working draft was published in November 1996
[WD-XML 1996]. Line one of the abstract reads:

Extensible Markup Language (XML) is an extremely simple dialect of SGML which is
completely described in this document.

Both parts of the sentence above are significant. The first part claims that XML is
“extremely simple”. Compared with the SGML standard the first draft XML was
relatively simple, but calling it “extremely simple” is misleading and this wording was
changed in the final W3C Recommendation [XML 1998]:

The Extensible Markup Language (XML) is a subset of SGML that is completely
described in this document.

The second part of the sentence, which remained unchanged between the first draft
and the Recommendation, claims that “XML is completely described in this document”. It
was important for XML to set itself apart from SGML in the sense that knowing
SGML was not a requirement for using XML. SGML is referenced in the XML
Recommendation, but is not among the normative references.8

The introductory sentence of the XML Recommendation also states the two
main tasks of the XML Working Group; the group had to select which of SGML's
features XML should support, and then describe the feature set in a readable manner.
The first task was influenced by the needs of SGML users. Dan Connolly grouped

8 Since XML has six normative references it can be argued that XML is not “completely
described in this document” as the Recommendation claims.

Chapter 2: Structured documents

67



the features into two: those that are architecturally solid, and those that are there for
transition purposes [Connolly 2000]:

My experience leads me to believe that parts of XML are solid architectural inrfastructure
[sic] for the long term: tags and attributes, and namespaces. But other parts of it are there
to manage the transition from the existing software base: DTDs, entities, processing
instructions, and I don't recommend investing them unless you are constrained by existing
software somehow.

Namespaces, which Connolly included in the group of architecturally solid features,
were not part of the XML Recommendation, but are described in a separate W3C
Recommendation which trailed the XML Recommendation by a year
[XML-names 1999].

Tim Bray, one of the editors of the XML specifications, later proposed to use a
similar grouping of XML features and to remove DTDs and entities from future
versions of XML [Bray 2002]. One reason for keeping processing instructions
(which Bray proposes) is that they are used to point to style sheets.

2.2.6.3 XML and style sheets

The XML Recommendation does not refer to style sheets in any way. In order to
use style sheets with XML documents there needs to be a way of linking a document
to a style sheet. In June 1999, W3C published a Recommendation called Associating
Style Sheets with XML Documents [XML-stylesheet 1999] which describes how to
achieve this using XML processing instructions. For example, to link to a CSS style
sheet from an XML document, the following line can be placed in the document:

<?xml-stylesheet href="mystyle.css" type="text/css"?>

The use of processing instructions for this purpose was somewhat controversial and
the Recommendation included text to warn about the future of processing
instructions:

The use of XML processing instructions in this specification should not be taken as a
precedent. The W3C does not anticipate recommending the use of processing instructions
in any future specification.

However, the Recommendation [XML-stylesheet 1999] is widely implemented and
processing instructions are, therefore, likely to be part of any future version of XML.

Cascading Style Sheets

68



2.2.6.4 XML in context

The stated goal of the XML Recommendation was to “enable generic SGML to be
served, received, and processed on the web in the way that is now possible with HTML”
[XML 1998]. Measured strictly by this goal, XML has not been a success; the use of
generic SGML/XML on the web today is limited. Also, most documents on the web
are exchanged in HTML and not in XML. That is, XHTML – which is HTML
written according to the rules of XML – has not replaced traditional HTML.

XML has been a success, however, but perhaps in an area that the creators did not
expect. While the XML Recommendation describes XML documents, Dan Connolly
noted at an early stage that XML could be used also for data exchange. When
describing XML in W3C's newsletter in March 1997, XML was introduced as “a
markup language for structured document interchange”, but he also noted [Connolly 1997]:

Database interchange and structured data exchange between software components and
agents are expected to be popular uses.

Indeed, the impact of XML on data exchange has been more significant than its
impact on document exchange.

2.3 The role of transformation languages
A transformation language is a language that expresses transformations from one
structure into another. In the context of structured documents, the structures are
typically tree structures containing textual content. For example, a transformation
language can transform a document written in a private XML vocabulary into an
XHTML document.

In this thesis, transformation languages are interesting for two reasons:

• Transformation languages are used on the server side to convert content into
content for the web. Typically, a transformation will only move content
downwards on the ladder of abstraction; to move content upwards, information
external to the document is necessary. It is important that flexible, powerful and
efficient transformation languages exist so that content can be generated at the
right level of abstraction.

• One school of thought in style sheet languages argues that the document
formatting process can and should be expressed as a transformation. Style sheet
languages in this tradition are transformation languages as well as being style

Chapter 2: Structured documents

69



sheet languages. In this thesis, they are referred to as transformation-based style
sheet languages (TBSSL).

The latter point is the topic of this section. I argue that while treating formatting as a
transformation has certain advantages, there are significant reasons for not adopting
this approach on the web.

2.3.1 Adorning the tree

Most style sheet languages are not transformation languages. Instead of transforming
the document structure into a presentation structure, these style sheet languages
adorn the document structure with presentational information. For example,
consider the following style sheet:

H1 { color: red }

It expresses that all H1 elements should be red. The information about color (and
other presentational properties) is attached to the H1 element. By way of various
value propagation mechanisms, all elements in the document have values for all
presentational properties. Examples of style sheet languages that use this approach are
CSS, P94 and FOSI.

Implementations of these style sheet languages may optimize memory structures
so that not all values are stored on each element but, in principle, the knowledge of
the value of each element/property combination should be known. Also, some
implementations may choose to use two different tree structures internally, one for
the logical structure and another for the presentational structure. Conceptually,
though, this behavior is not necessary.

2.3.2 Transforming the tree

Transformation-based style sheet languages do not adorn a tree, instead they
transform the logical structure into a presentational structure. DSSSL and XSL are
style sheet languages that fall into this category.

Often, these languages are referred to as transformation languages rather than style
sheet languages. In the case of XSL, the transformation language has been given its
own name, XSLT (where “T” stands for transformation). Below is an example of
how XSLT can be used to convert a XML element into an HTML element.
Consider a XML element written in a private vocabulary:

<ChapterHeading>The headline</ChapterHeading>

Cascading Style Sheets

70



To transform the ChapterHeading element into an H1 element, this XSLT
fragment can be used:

<xsl:template match="ChapterHeading">

<H1>

<xsl:apply-templates/>

</H1>

</xsl:template>

The output of the transformation is:

<H1>The headline</H1>

Note that the resulting HTML is at a high enough level of abstraction that
device-independence and accessibility are preserved. What is lacking is information
about how to present it. XSL addresses this with formatting objects.

2.3.3 Formatting objects

In order for transformation-based languages also to be style sheet languages, a set of
presentational elements is typically defined. The presentational elements serve as
building blocks for presentational structure. In DSSSL, the presentational elements
are called flow objects and in XSL they are called formatting objects. The DSSSL
flow objects are discussed in more detail in the next chapter and the rest of this
section focuses on XSL formatting objects (XSL-FO) [XSL 2001].

XSL-FO is an XML vocabulary for describing the presentation of documents. A
simple XSL style sheet which transforms the ChapterHeading element into a
formatting object follows:

<xsl:template match="ChapterHeading">

<fo:block font-size="1.3em" margin-top="1.5em">

<xsl:apply-templates/>

</fo:block>

</xsl:template>

The output of the transformation is XSL-FO:

<fo:block font-size="1.3em" margin-top="1.5em">

The headline

</fo:block>

The resulting flow object is at a lower level of abstraction than the HTML element
that was the output in the previous example. When transformed into HTML, the
semantics of the XML element (ChapterHeading) is preserved since the H1 element

Chapter 2: Structured documents

71



is globally recognized as being a headline of level 1. When transformed into
XSL-FO, the semantics is lost and replaced by presentational properties
(font-size, margin-top, and margin-bottom which are borrowed from CSS)
that are low on the ladder of abstraction.

Extensive use of XSL-FO on the web would be a threat to accessibility. Consider
one example from braille renderings. Since braille characters use much space, words
are often contracted to fit more text on one page. However, some words – for
example program variables – should not be contracted. HTML offers the ability to
express this (using the VAR element) and this is crucial to improve braille renderings.
XSL-FO, on the other hand, gives access to the text but without the information
that can be used to decide if a word can be contracted or not.

2.3.4 Retaining both semantics and presentation

Transformation languages such as XSLT can be used also to generate output that
retains the abstraction level while also containing presentational information. Below
is an example wherein XML is transformed into an HTML element with associated
CSS stylistic properties:

<xsl:template match="ChapterHeading">

<H1 STYLE="font-size: 1.3em; margin-top: 1.5em">

<xsl:apply-templates/>

</H1>

</xsl:template>

The output of the transformation is:

<H1 STYLE="font-size: 1.3em; margin-top: 1.5em">

The headline

</H1>

The result preserves both the semantics (in the form of HTML elements) and
presentational information (as values on the STYLE attribute).9

Yet even more semantics can be preserved by using the CLASS attribute of
HTML. Consider this example:

9 When authoring with CSS, the stylistic rules would normally appear in a separate style sheet
and not in a STYLE attribute as in the above example. Having separate style sheets eases
web-site maintenance and makes documents smaller. However, both forms are valid and one
can automatically convert between the two.

Cascading Style Sheets

72



<xsl:template match="ChapterHeading">

<H1 CLASS="ChapterHeading"

STYLE="font-size: 1.3em; margin-top: 1.5em">

<xsl:apply-templates/>

</H1>

</xsl:template>

The output of the transformation is:

<H1 CLASS="ChapterHeading"

STYLE="font-size: 1.3em; margin-top: 1.5em">

The headline

</H1>

In the example above, the CLASS attribute is used to store the semantics of the
private XML vocabulary. Since this XML vocabulary is not universally understood,
the addition of the CLASS attribute does not raise the document's abstraction level on
the web. However, the CLASS attribute makes it possible for the author to transform
the HTML document back to the original document.

2.3.5 Style versus transformation

As discussed above, transformation-based style sheet languages take a different
approach to the formatting process than do other style sheet languages. Instead of
adorning a logical document structure, these languages transform documents
downward on the ladder of abstraction into a presentational structure of formatting
objects. In the context of the web, the transformation can take place either on the
server side or on the client side. Each option has a significant drawback:

• If the transformation takes place on the server side and formatting objects (for
example XSL-FO) are transmitted over the web, there will be a loss of semantics
since the transmitted content is at a lower level of abstraction than if the content
had been transmitted in HTML.

• If the transformation takes place on the client side, the browser will not be able
to support progressive rendering of content where content is displayed in
small chunks as the document is downloaded. Since the transformation may
specify that the last element in the logical structure should come first in the
presentational structure, the whole document must be downloaded before the
transformation can take place.

Chapter 2: Structured documents

73



In a traditional publishing environment where printed material is the output,
however, the above features are not necessarily drawbacks and the
transformation-based approach can make sense. There are three reasons for this:

• Authors will often submit material in different formats that need some form of
transformation before formatting.

• Since the final result is on paper, the loss of machine-readable semantics is
inherent in the medium.

• Progressive rendering is not an issue when paper is the final result.

Hence, transformation-based style sheet languages may be suitable in traditional
publishing environments, but not on the web. It should be emphasized that the
discussion in this section pertains to transformation-based style sheet languages, not
to transformation languages in general.

2.4 Summary and conclusions
Structured document systems have been an area of research and development since
around 1980. The concept of separating structure from presentation is now firmly
established. Style sheet languages are a requirement for the presentation of structured
documents but several of the structured document formats were developed without
an accompanying style sheet language. As a result, the benefits of structured
document formats have been limited.

The ladder of abstraction is proposed as a way of measuring abstraction levels of
structured document formats. A document format's level of abstraction is an
important factor when determining the format's suitability for use on the web:
formats that are high on the ladder typically require more processing – including
transformations and styling – before presentation. Document formats that are low on
the ladder of abstraction require little processing, and may be unsuitable for use on
the web for accessibility reasons. Since the style sheet language is an important part of
the processing of documents before presentation, the level of abstraction is very
relevant in determining the suitability of a particular style sheet language/document
format combination.

Several structured document systems were developed in the 1980s and 1990s.
Scribe, LaTex, ODA, and SGML were developed prior to the web and none of
them have seen much use on the web. HTML and XML were developed for the
web and are still seeing active development. HTML is the most popular structured
markup language for the web, and – when used correctly – is a media-independent

Cascading Style Sheets

74



document format that is recognized by all web browsers. As such, HTML has
established a layer of universal semantics for web documents. One important feature
of HTML is that it does not need extensive client-side transformations before
presentation. Browsers, therefore, can support progressive rendering of documents.

An alternative to HTML is to use generic XML, i.e. a private XML vocabulary.
Depending on the format, the document may require extensive transformation on
the client side. This makes the presentation more flexible (e.g., elements can be
reordered) but progressive rendering becomes impossible. Also, the document is no
longer universally understood. Transformation-based style sheet languages are
therefore not suitable on the web.

Different document formats serve different purposes and different audiences.
There is no document format or level of abstraction that will be ideal for all purposes
and the web must be hospitable to a range of formats. The challenge is to find a
format that is high enough on the ladder to be useful in many contexts while not
requiring too much effort by the author, nor too much transformation in the user
agent. HTML, when used correctly, comes close to being an ideal format for a wide
range of documents.

Having established the need for style sheet languages in order to present
documents, style sheets are the topic of the next two chapters.

Chapter 2: Structured documents

75





Chapter 3:

Style sheets prior to the web

One of the most attractive features of structured documents is that the content can
be used in many contexts and presented in various ways. A variety of different style
sheets can be attached to the logical structure to serve different needs. However, the
flexibility that structured documents offer comes at a price since some kind of style
sheet mechanism is needed to make the content available for users.

In order for content in structured documents to be presented, a set of stylistic
rules – describing for example, colors, fonts and layout – must be applied. A
collection of stylistic rules is called a style sheet. Style sheets in the form of written
documents have a long history of use by editors and typographers to ensure
consistency of presentation, spelling and punctuation. In electronic publishing, the
term style sheet is mostly used in the context of visual presentation rather than
spelling and punctuation. In this thesis, style sheet is defined as a set of rules that
associate stylistic properties and values with structural elements in a document, thereby expressing
how to present the document.

Style sheets have been referred to by other names in the past. P94 calls them
presentation schemas. Interleaf and Xerox Star refer to them as property sheets. Microsoft
Word refers to them as styles. FOSI and DSSSL use the term characteristic to mean
what CSS calls property, while P94 sometimes calls it a parameter. Because various
proposals use different terms to mean the same thing and, in order to facilitate a
comparison, this thesis uses CSS terms in the discussions.

In this chapter are discussed three seminal style sheet languages that were
developed before the web. Two of them (FOSI and DSSSL) were developed by
standards committees for use with SGML. The third (P94) was developed by a
research project for experimental purposes. The three systems were chosen since
they:

• contribute novel features to the concept of style sheets;

• separate style sheets from the document;

• can, in principle, be used with different types of structured document systems;

77



• are not tied to any particular application or formatter;

• were developed before the web. Although the development of DSSSL and P94
in part took place after the web was launched, the style sheet languages do not
exhibit any influence from the web.

This chapter does not cover proprietary style sheet systems (such as Microsoft Word,
FrameMaker, Interleaf, Panorama, Lector, ViewPort and ReportLab's RML2PDF),
nor does it discuss systems that have been been described in articles but not used in
practice (such as [Brüggemann-Klein&Wood 1992] and
[Weitzman&Wittenberg 1994]). Also, two authoring systems (Scribe, LaTex) that
also have style sheet languages associated with them are discussed in the previous
chapter instead of here.

Each review starts with a short description of the historical context of the
language, followed by a technical review. The reviews are not exhaustive but give a
general overview of each language and discuss points of interest along the way.
Document and style sheet fragments are used extensively in the discussions since I
believe style sheet languages are best understood by looking at examples.

3.1 Components of a style sheet language
Before evaluating the style sheet languages themselves, it is necessary to establish
common criteria by which the languages will be judged. I suggest that a style sheet
language has six required components:

• Syntax: a style sheet language needs a syntax in order to be expressed in a
machine-readable manner. All languages reviewed in this dissertation have a
text-based syntax to make them easier for humans to read and write.
Furthermore, the syntax of the style sheet language can be specified in a
standardized syntax (FOSI is written in SGML), borrowed from other languages
(DSSSL is based on the Scheme programming language), or inspired by other
syntaxes (SSP, which is discussed in the next chapter, is inspired by X11
resources [X11]).

• Selectors: selectors specify which elements are to be influenced by the style rule.
As such, selectors are the glue between the structure of the document and the
stylistic rules in the style sheets. Some languages express selection only through
selectors (CSS, SSP), while other languages also perform selection in declarations
associated with potential elements (DSSSL, FOSI, P94). In the latter case, a

Cascading Style Sheets

78



simple selector language based on element types is typically combined with an
expression language.

• Properties: all style sheet languages have some concept of properties that can be
given values to change one aspect of rendering an element. The font size and font
weight are typical examples of properties. Some languages group properties (e.g.
all font-related properties) into categories (FOSI) or allow several properties to
be set in some shorthand syntax (CSS). Properties to set white space and borders
can be relative to the writing direction (before/after/start/end), or absolute
(top/bottom/left/right and inside/outside). Most style sheet languages have
properties of both types (paragraph indentation is always relative, and page
margins are typically absolute) but tend to favor one kind of property.

• Values and units: properties change the rendering of an element by being
assigned a certain value. The value can be a string, a keyword, a number, or a
number with a unit identifier. Also, values can be lists or expressions involving
several of the aforementioned values. A typical value in a visual style sheet is a
length; for example, 3.1cm which consists of a number (3.1) and a unit (cm).
Units can be absolute (e.g. cm) or relative to some other measurement (e.g. em,
which is relative to the font size). Some languages also allow expressions as
values.

• Value propagation mechanism: to avoid having to specify explicitly all values for
all properties on all elements, style sheet languages have mechanisms to
propagate values automatically. The main benefit of value propagation is
less-verbose style sheets. Inheritance, initial values and cascading are
examples of value propagation mechanisms.

• Formatting model: all style sheet languages support some kind of formatting
model. All style sheet languages discussed in this thesis has a visual formatting
model and some also support an aural formatting model for accessibility reasons.
In a visual formatting model logical elements are turned into formatting
objects in the formatting process. Most often, the formatting objects are
rectangular boxes that are laid out one after the other or nested inside each other.
Different visual formatting models have different kinds of formatting objects; for
example, generated by block-level, inline, floating and various table elements.
Visual formatting models can be classified as box models (where hierarchies of
boxes fit inside each other) or as sequence models (where areas are placed in
sequence in the layout area). Further, formatting can be outside-in (where

Chapter 3: Style sheets prior to the web

79



parent elements set the size of their children) or inside-out (where child
elements determine the size of their parent).

Formatting to an aural device is very different from visual formatting, but the
concepts of style sheets, properties, values and units are still applicable.

The above components are present in all style sheet languages. Many style sheet
languages also contain functionality in these optionaly components:

• Generated content: more-advanced style sheet languages have ways of adding
text and other content to the document presentation. Style sheets do not contain
substantial content and generated content is limited to short passages including:
simple strings, quote marks, counters, cross-references, headers/footers,
horizontal rules and table of contents.

• Linking mechanism: in order to take effect, a style sheet must be linked to a
document. The linking can be specified in the document, in the style sheet, or
by the human user. The linking mechanism is often not part of the style sheet
language itself but is still described in style sheet language proposals. Some style
sheet languages have ways to import one style sheet into another.

3.2 Formatting Output Specification Instance (FOSI)
SGML (as discussed in Chapter 2, Structured documents) defines the syntax for
specifying the structure and content of a document. However, SGML does not
describe the presentation of documents. Around 1986, when SGML became an ISO
standard, users typically relied on proprietary systems to produce human
presentations of SGML documents.

In 1987, the US Department of Defense (DoD) organized a committee to study
how SGML could address the need for document interchange. A year later DoD
adopted SGML as the documentation component of the CALS (Continuous
Acquisition and Life-cycle Support) initiative.10 For the next decade, CALS was an
active proponent of SGML-based technologies [SGMLUG 1990]
[Goldfarb et al.1997].

In addition to representing structure and content – which SGML addressed –
CALS also needed a vendor-neutral way of presenting SGML documents. Where

10 The acronym CALS originally stood for Computer-Aided Logistics Support, then for
Computer-aided Acquisition and Logistics Aupport until it was changed to the current Continuous
Acquisition and Life-cycle Support

Cascading Style Sheets

80



the standards did not exist, CALS created its own.11 In [Kidwell&Richman 1997],
the history is told in this way:

Because SGML is independent from presentation, some means of describing presentation
to a document composition system was needed. Unfortunately, the language that the
international standards community was developing to satisfy this requirement, called the
Document Style Semantics and Specification Language (DSSSL), was first published in
draft form in late 1994, and was published as an official ISO standard in late 1995 -
eight years after the CALS requirement was identified. During that time, the DoD
elected to establish an interim capability for CALS, based upon SGML, that addressed
composition.

The “interim capability” is the Output Specification described in [FOSI 1997]. A style
sheet written according to the Output Specification is called a Formatting Output
Specification Instance, FOSI for short. The specification is also commonly referred to as
FOSI and this term is used in this thesis although the specification refers to itself as
OS.

For almost 10 years, FOSI was the only vendor-neutral method of specifying the
presentation of SGML documents. The FOSI specification went through three
major revisions during that period and matured along the way. As with all
specifications in this area, FOSI contained ambiguities that led to non-interoperable
implementations [Harvey 2000][ManTech 1997], and some of the advanced features
were not widely supported. By the time the specification matured, still well before
DSSSL became a standard, there were only two implementors left: Arbortext and
Datalogics [Harvey 2002].

For these reasons, FOSI was controversial. In 1994, the United States Postal
Service issued a solicitation for a system to “edit technical manuals, and to print hard
copies of manuals in various sizes and formats or to generate electronic media copies through the
use of an electronic handbook feature” [USPS 1994]. The solicitation specified that
SGML was to be used for content and FOSI style sheets were to be used to render
the content. Expressing a strong belief in a future DSSSL, the solicitation stated that
FOSI “defines the appearance of an SGML document by determining the format of each tag
described in a DTD. FOSI is ... the recognized government standard for format until
[Document Style Semantics and Specification Language (DSSSL)] is approved as the
superseding international standard”. Interleaf, an SGML software company, protested
against several aspects of the solicitation, including the requirement for a solution to
support FOSI. Interleaf claimed that “FOSI is not a standard; interpretation is

11 One of them, the CALS Table model, was influential for the HTML table model
[Bingham 2000][Raggett 1995c].

Chapter 3: Style sheets prior to the web

81



system-dependent and is effectively proprietary”. Also, Interleaf claimed that the USPS
would require “highly trained and technical personnel to construct FOSIs” because the
“process is detailed, and non-intuitive”. The USPS defended the use of FOSI and the
protest was rejected [USPS 1994].

FOSI is still (as of 2004) in use and supported by commercial implementations. I
have not had access to a FOSI implementation when performing this review but
have had helpful discussions with Paul Grosso and Pamela Gennusa who have been
central in the development of FOSI. The initial FOSI specification, called
MIL-M-28001, was originally issued in February, 1988; versions MIL-M-28001A
and MIL-M-28001B were issued in July, 1990 and June, 1993, respectively. The
technical review below is based on the latest version of the FOSI specification,
MIL-PRF-28001C, published in 1997 [FOSI 1997].

3.2.1 Syntax

A FOSI style sheet describes the presentation of an SGML document. It is also
written in SGML. FOSI is, therefore, an early example of using a markup language
to store data (i.e., stylistic rules) rather than documents. Here is a sample FOSI
fragment:

<e-i-c gi="h1">

<charlist inherit="1">

<font size="14pt" weight="bold">

</charlist>

</e-i-c>

The e-i-c element (which stands for element in context) is FOSI's selector
mechanism. In the example above all H1 elements are selected (gi is short for generic
identifier which is SGML's term for element names).

The next element is charlist which contains a list of stylistic properties and
values for the h1 elements. The inherit attribute on charlist indicates whether
or not property values should be inherited from the parent element. Boolean values
are represented as 1 and 0 in FOSI. By default, inheritance is turned off. FOSI has an
elaborate mechanism for “inheritance and defaulting” (described below), but in the
simple example above all inheritable properties take their values from the the parent
element with the exception of font size and font weight.

Cascading Style Sheets

82



3.2.2 Selectors

Selectors in FOSI are expressed as attributes to the e-i-c element. In the simple
example in the previous section, all elements of a certain type (h1) were selected
independently of their context. Here is a more advanced example which selects
elements in context (and thereby does justice to the e-i-c name):

<e-i-c gi="li" context="ol">

<charlist>

<font posture="italic">

</charlist>

</e-i-c>

The selector above expresses two requirements; for elements to match they must be
of type li and have an ol element as parent. The context attribute expresses
parental relationships, and can – by adding the asterisk character in the UNIX
wildcard tradition – also express ancestor relationships.

<e-i-c gi="li" context="* ol">

<charlist>

<font posture="italic">

</charlist>

</e-i-c>

In the example above the li element must have an ancestor of type ol, but ol does
not have to be the parent.

The FOSI specification describes in detail how the specificity of a contextual
selector is determined (“determine which context path most specifically matches the current
path” in FOSI terminology). The strategy for determining specifictiy is similar to the
one defined in CSS.

The occur attribute adds more constraints to selectors by specifying that the
element should be the only, first, last, middle (all elements but first and last),
notlast, or notfirst sibling. Also, all (which is the default value) is allowed.
Here is a simple example:

<e-i-c gi="P" occur="first">

<charlist>

...

</charlist>

</e-i-c>

Chapter 3: Style sheets prior to the web

83



Elements can also be selected based on the existence, or value, of an attribute. FOSI
does this in two stages: first the element is selected based on its name, thereafter the
attributes are matched. Consider this example:

<e-i-c gi="NOTE">

<att>

<specval attname="WARNING" attval="#ANY">

<charsubset>

...

</charsubset>

</att>

</e-i-c>

In the example above, the att and specval elements indicate that only NOTE
elements with a WARNING attribute should be selected.

3.2.3 Properties

FOSI has a rich set of properties that are grouped into categories. Each category is
represented by an element, and each property is an attribute. Consider this example:

<e-i-c gi="h1">

<charlist inherit="1">

<font size="14pt" weight="bold">

<textbrk startln="1" endln="1">

<presp minimum="4pt" nominal="6pt" maximum="8pt">

<postsp minimum="14pt" nominal="18pt" maximum="18pt">

</charlist>

</e-i-c>

The categories in the example above are font, textbrk, presp and postsp.
Categories are always children of charlist. Besides being a container for the
categories, the charlist element also determines if inheritance should be turned on
for its children. FOSI's concept of inheritance is discussed in more detail below.

FOSI has some properties that are relative to the writing direction, and some that
are absolute. The properties to set vertical margins on elements (called presp and
postsp, short for prespace and postspace, respectively) are relative, while the properties
to set horizontal margins are absolute (leftind, rightind).

Some properties are interdependent. In the above example presp and postsp

will only take effect when startln and endln are set on the textbrk element.
Table 4 gives an overview of all FOSI categories.

Cascading Style Sheets

84



Table 4: FOSI's categories.

Category Properties Corresponding CSS functionality

font
style, famname, size, posture, weight,
width, smallcap, offset

Corresponds roughly to the font- properties in CSS.

leading lead, force Corresponds roughly to line-height in CSS.

hyphen (hyphenation) lang, hyph, zone
CSS2 has no functionality for hyphenation. The lang

attribute of HTML and XML can express language.

wordsp (word spacing) and
lettersp (letter spacing)

minimum, nominal, maximum
Corresponds to word-spacing and
letter-spacing in CSS, but CSS can only express
nominal values.

sentxsp (sentence spacing) minimum, nominal, maximum
No similar functionality in CSS since it is very hard to
programmatically determine what a sentence is.

lettersp (letter spacing)
minimum, nominal, maximum,
kerntype, kernpair

Some effects can be achieved with the
letter-spacing property in CSS.

indent leftind, rightind, firstln

Similar effects can be achieved with margin and

text-indent in CSS (but see “page model” below for
a discussion of differences).

quadding quad, lastquad Roughly similar to text-align in CSS.

highlt (highlight)

reverse, scoring, scorewt, scoreoff,
scorechron, scorechr, bckclr
(background color), fontclr (font
color), bckpct, forpct, allcap,
scorespc

Similar effects can be achieved with color,
background, and text-decoration in CSS.

chgmark (change marks)
literal, barthick, baroffset, join, type,
cmclass

There is no similar functionality in CSS.

prespace/postspace
minimum, nominal, maximum,
condit, priority

The same effects can be achieved with margin,
padding, page-break-before, and
page-break-after in CSS

keeps
keep, scope, widowct, orphanct,
next, prev, floatsout

Corresponds to page-break-inside, widow, and
orphan in CSS.

vjinfo (vertical justification) presppr, postsppr, keepspr
Corresponds to the vertical-align property in
CSS.

textbrk (textbreak)
startcol, startpg, resumepg, pageid,
newpgmdl, startln, endln

Corresponds to the page-break-before,
page-break-after in CSS.

span span
The span property describes how elements span
several columns.

border bordname
The bordname property points to the a border
definition on a per page level.

float

flidref (a reference to a float
location), width, widowht, orphanht,
scope, pagetype (same, facing etc.),
inline, multirefname

These properties describe how content can float to
other parts of the document. For example, elements
can float to the top of recto pages. There is no similar
functionality in CSS.

algroup (alignment group)
refpoint (top, first, middle, last,
bottom), postspace

These properties are used to align elements next to
each other, similar to the float property in CSS.

Chapter 3: Style sheets prior to the web

85



Category Properties Corresponding CSS functionality

suppress sup

The sup property has an integer value from 0-5
indicating a level of content suppression. In CSS, the
none value on the display property can be used to
indicate content suppression.

boxing

toffset, boffset, loffset, roffset, trel,
brel, siderel, leftgap, rightgap, thick,
ttype, btype, ltype, rtype, inclr, inpct,
outclr, outpct

These properties describe the boxing of content.
This functionality is described in background,
padding, and border properties.

link
sysid, targdocent, targid, endtargid,
linktype, uselink, usetargid,
useendtargid

These properties describe various aspects of links.
There is no similar functionality in CSS.

linkproc
loprocess, exloproc, loconrule,
liprocess, exliproc, liconrule

These properties describe various aspects of links.
There is no similar functionality in CSS.

reset resetlist Similar to the counter-reset property in CSS

enumerat (enumeration) increm, enumid, setvalue Similar to the counter-increment property in CSS

ruling
thick, lentype, speclen, rellen,
voffset, placemnt, ruleclr, rulepct,
type

These properties describe the look and placement of
horizontal rules. CSS can only describe whether a
horizontal rule should be present or not.

puttext literal, placemnt This functionality is similar to generated text in CSS2.

putgraph
graphname, width, depth, placemnt,
scalefit, hscale, vscale, hoffset,
voffset, rotation

CSS relies on markup to add external graphics.

savetext textid, conrule, placemnt, append
Describes text content to be saved for use elsewhere.
CSS does not have similar functionality.

usetext
source, placemnt, userule,
userparam

Describes what to do with text saved from some part
of the document. There is no similar functionality in
CSS.

In addition to the categories listed above, FOSI has several categories for table
formatting.

3.2.4 Values and units

Values in FOSI can be keywords, integers and lengths.
The length units in FOSI are: pi (picas), pt (points), in (inches), mm

(millimeters), cm (centimeters), em (em space). Notably missing is a pixel unit, and
this indicates that FOSI is mostly targeted for printed output. The only relative unit
is the em unit which CSS later adopted. The pica unit is called pi, not pc as in CSS.

Values can contain simple expressions but relative and absolute units cannot be
combined. Combinations of units are allowed. For example, to specify 5 picas plus 3
points one could write:

5pi 3pt

Cascading Style Sheets

86



The space separating the two values is optional. Subtraction can be achieved by
adding a negative value:

5pi -3pt

Integer values are used to represent boolean values [FOSI 1997]:

Zero is defined as 0, false, no, and off. Non-zero is defined as 1, true, yes, and on.

Some categories have properties to declare minimum, nominal and maximum
values:

<e-i-c gi="title" context="chapter">

<charlist>

<font inherit="1" size="14pt" weight="bold">

<leading lead="16pt">

<quadding quad="center">

<presp minimum="4pt" nominal="6pt" maximum="8pt">

<postsp minimum="14pt" nominal="18pt" maximum="18pt">

<keeps next="1">

<textbrk startln="1" endln="1">

<span span="1">

</charlist>

</e-i-c>

3.2.5 Value propagation

FOSI has an elaborate model for “inheritance and defaulting”. Some properties in FOSI
are inheritable, but even inheritable properties are not inherited unless inheritance is
specifically enabled. Inheritance can be enabled on a per-category basis and
inheritance is enabled by the inherit attribute:

<e-i-c gi="TITLE">

<charlist>

<font inherit="1" size="20pt">

</charlist>

</e-i-c>

In the example above, all properties in the font category use the inherited value
except size which sets the value explicitly. By setting the inherit attribute on the
charlist element, inheritance will be enabled for all inheritable properties:

Chapter 3: Style sheets prior to the web

87



<e-i-c gi="h1">

<charlist inherit="1">

<font size="14pt" weight="bold">

<textbrk startln="1" endln="1">

<presp minimum="4pt" nominal="6pt" maximum="8pt">

<postsp minimum="14pt" nominal="18pt" maximum="18pt">

</charlist>

</e-i-c>

The inherit attribute on the charlist element effectively gives the default value
for all inheritable categories therein, and then the individual inherit attribute on each
inheritable category may override it.

The specification also describes an envname attribute on the charlist element
[FOSI 1997].

If inheritance is not enabled for this category, the characteristics in this category that are not
explicitly assigned values obtain their respective values from the environment indicated by
the environment name (envname) attribute of the charlist.

In practice, however, envname is never used in FOSI style sheets [Grosso 1993].
Figure 2 is one of the few figures in the FOSI specification. It describes the

information flow in the inheritance and defaulting mechanism.

3.2.6 Visual formatting model

FOSI supports a rich formatting model, including tables, multi-column layout,
headers and footers areas, and footnotes. Here is a simple example on how to set page
margins.

<pagedesc>

<pagespec>

<topmarg nomdepth="1.5in">

<botmarg nomdepth="1.4in">

<leftmarg width="1.5in">

<rightmarg width="1.5in">

</pagespec>

</pagedesc>

FOSI's formatting model is based on a sequence of areas being poured into the
layout area. Normally, block-level elements are positioned relative to the layout
area. However, FOSI also provides a way of referencing the position of the parent
element to create the appearance of a box model [FOSI 1997]:

Cascading Style Sheets

88



Figure 2: Inheritance and defaulting flow chart in FOSI.

The syntax for indents allows for specification [..] with respect to the text margin
determined by the parent element's indent, for example, "@+2pi" or "@2pi". The
delimiter "@" can be used to specify that the indent is relative to the text margin established
by the element's parent, including any indenting that may have been applied.

Chapter 3: Style sheets prior to the web

89



Here is an example of using this feature:

<e-i-c gi="BLOCKQUOTE">

<charlist>

<indent firstln="*" leftind="@+1em" rightind="@+1em">

</charlist>

</e-i-c>

(In FOSI the indentation of the first line must be set explicitly to the special value
“*” to give it the same indentation as the rest of the paragraph.)

Elements are set to be block-level or inline with the textbrk category:

<e-i-c gi="BLOCKQUOTE">

<charlist>

<textbrk startln="1" endln="1">

</charlist>

</e-i-c>

The startln and endln properties indicate that there should be a line break before
and after the element, respectively.

3.2.7 Linking mechanism

Most commonly, FOSI style sheets are not directly associated with documents.
Instead, the style sheet is associated with a DTD and documents refer to the DTD
via the SGML doctype declaration. How the association between the DTD and the
style sheet is established is implementation-dependent.

3.2.8 Generated content

FOSI has a developed system for generated content. Here is a simple example to add
a string and a counter before an element:

<e-i-c gi="H1">

<charlist>

<font weight="medium" size="20pt">

<enumerat increm="1" enumid="chaptercounter">

<usetext placemnt="before" source="\Chapter \,chaptercounter,\: \">

</usetext>

</charlist>

</e-i-c>

Cascading Style Sheets

90



The generated content is specified on the source attribute of the usetext element.
The “\” characters are effectively quotes to delimit literal strings. The
chaptercounter string is the name of a counter that is declared somewhere else.

To give the generated text a distinct style, the subchars element can be used:

<e-i-c gi="H1">

<charlist>

<font weight="medium" size="20pt">

<enumerat increm="1" enumid="chaptercounter">

<usetext placemnt="before" source="\Chapter \,chaptercounter,\: \">

<subchars>

<font weight="bold">

</subchars>

</usetext>

</charlist>

</e-i-c>

3.2.9 Other formatting contexts

Not proposed.

3.2.10 FOSI in context

FOSI was the first style sheet language to be standardized and has, as such, been a
pioneer in the area of style sheet languages. The FOSI specification is lengthy and
difficult to read (for example, it lacks a table of contents), but FOSI style sheets can
be remarkably intuitive, concise and powerful.

Being a pioneer, FOSI shows innovation in many areas. Among the innovative
features are:

• The use of SGML as a syntactic foundation. It may be argued that SGML was
meant to create markup languages and not style sheet languages, but the FOSI
syntax is still friendly both to authors and readers.

• The inheritance/default mechanism. Though it is too complicated to be used in
full, it is an early attempt to address the issue of multiple sources for stylistic
information. As such it can be compared with cascading in CSS.

• The simple, yet powerful selector mechanism. (The syntax, however, is only
readable to the initiated.)

Chapter 3: Style sheets prior to the web

91



In addition to being innovative, the specification has a reasonably restricted scope.
The properties have been carefully selected to produce common typographic effects
without being excessive.

On the negative side, some features described in the specification remained
unimplemented and unused. Also, the number of implementations is limited and
they support different subsets of the specification. For this reason, FOSI style sheets
have a reputation for being non-interoperable [Harvey 2002].

While the SGML community was waiting for DSSSL, FOSI actually did a decent
job of printing SGML documents. If more efforts had gone into producing a more
mature specification, trimming unused features, and addressing the issues of
importance to the SGML community (e.g., multi-directional text) I believe FOSI
would have prevailed.

3.3 DSSSL
When FOSI was adopted by CALS around 1989 it was perceived of as an interim
solution [Kennedy 1997]. The SGML community expected DSSSL [DSSSL 1996]
to be a permanent solution. For a permanent solution to be acceptable to the SGML
community it would need to:

• be approved by ISO, the same organization that published the SGML standard;
and

• support multi-directional typography. For the CALS project this aspect of a style
sheet language had not been important since all their documents were written in
English.

The work on DSSSL started in 1986-87 overlapping with the final “tweaking” of
SGML [Adler 2002]. DSSSL became an ISO standard a decade later in 1996
[DSSSL 1996]. Expectations were high when DSSSL was released. From
[ManTech 1997]:

It is our belief that the tremendous interest and anticipation for DSSSL in the SGML
arena is not without reason, and we expect DSSSL to be the undisputed (likely and
logical) specification of choice in SGML publishing for either paper or electronic delivery.

DSSSL is the most complex specification reviewed in this thesis. The specification is
difficult to read and has few examples. The DSSSL community, however, has
produced a body of documentation on DSSSL and Paul Prescod's tutorial
[Prescod 1997a] has been especially helpful when reviewing DSSSL.

Cascading Style Sheets

92



The DSSSL specification has two main parts: the style language and the
transformation language. Only the style language is of concern in this dissertation,
and the transformation language is not discussed.12

3.3.1 Syntax

DSSSL is based on the Scheme programming language and this is reflected in the
syntax as well as functionality. Scheme is an example of a functional programming
language that emphasizes the evaluation of expressions, rather than the execution of
commands [Hutton 2002]. While most other style sheet languages are not
Turing-complete DSSSL is a Turing-complete programming language. The DSSSL
specification itself [DSSSL 1996] downplays this:

The DSSSL specification languages are declarative. They are not intended to be complete
programming languages, although they contain constructs normally associated with such
languages.

(The term “DSSSL specification languages” refers to the DSSSL style language and the
DSSSL transformation language.)

Jon Bosak explains how DSSSL is different from other programming languages
[Bosak 1997]:

It's a mistake to put DSSSL into the same bag as scripting languages. Yes, DSSSL is
turing-complete; yes, it's a programming language. But a script language (at least the way
I use the term) is procedural; DSSSL very definitely is not. DSSSL is entirely functional
and entirely side-effect-free. Nothing ever happens in a DSSSL stylesheet. The stylesheet
is one giant function whose value is an abstract, device-independent, nonprocedural
description of the formatted document that gets fed as a specification (a declaration, if you
will) of display areas to downstream rendering processes.

Paul Prescod [Prescod 1997a] expands on the implications of being “side-effect-free”:

DSSSL's "expression language" is a full featured programming language that can do most
of the things other programming languages can do. It is, however, a side-effect free
language. That means that you cannot read or write files, open or close windows, assign to
variables or do anything other than transform or format an SGML document.

The choice of Scheme as the basis for DSSSL was lauded by Erik Naggum
[Naggum 1994]:13

12 The style language in DSSSL can also be used as a transformation language with an
extension that Jade [Clark 1998], a DSSSL implementation, supports.
13 The lack of normal capitalization in this quotation is the choice of the original author.

Chapter 3: Style sheets prior to the web

93



the most obvious advantage of using Scheme is that the DSSSL team built on the decades
of experience that went into Scheme, not having to invent their own language. the second
most obvious advantage of using Scheme is that several of the large SGML vendors are
already using languages from the LISP family in their products, if not Scheme itself, and
it has an inordinately simple syntax that you learn in half an hour.

There were few dissenters to the choice basing DSSSL on Scheme. Paul Prescod
presented “a couple of heretic ideas” in a message posted to the DSSSL mailing list
[dssslist] in May 1997. One of the issues was the syntax [Prescod 1997a]:

Syntax less like Lisp? Maybe a CSS-like syntax? I'm strongly supportive of the existing
DSSSL syntax for the full DSSSL constituency, but I don't want to turn off Dirty Perl
Hackers.

At this point, however, DSSSL had already become an ISO standard and was not
about to change.

Here is a simple DSSSL fragment:

(element H1

(make paragraph

font-size: 14pt

font-weight: 'bold))

The above example declares that elements of type H1 are block-level with 14pt bold
text. In DSSSL terminology, a “Specification of a Sequence of Flow Objects” (a.k.a. sosofo)
is returned by the “element construction rule” whenever an H1 element is encountered
in the source document. The sequence specified in the above rule only contains one
flow object, namely the paragraph flow object.

The rule above is composed of two parts:

• the selector part (described in the “Selectors” section below);

• the construct expression, i.e. the make function which creates the flow object
(described in the “Properties” section below).

Two properties are set in the above construct expression: font-size and font-weight.
The first property takes a length value (14pt) and the second a keyword value
('bold) Keyword values in DSSSL are preceded by ' to indicate that they should
not be evaluated further.

Since DSSSL is a programming language, common operations can be abstracted
into a separate function. Consider this example:

Cascading Style Sheets

94



(define (create-heading heading-font-size)

(make paragraph

font-size: heading-font-size

font-weight: 'bold))

(element h1 (create-heading 24pt))

(element h2 (create-heading 18pt))

In the above example, the create-heading function is defined. It takes one
argument, namely the size of the heading. By calling the function with different
arguments, h1 and h2 elements will have different font sizes, but both will be
bold-faced.

Although DSSSL's syntax is based on Scheme, DSSSL style sheets are technically
SGML documents and need SGML's DOCTYPE to be recognized as such.

<!DOCTYPE style-sheet system "style-sheet.dtd" >

(element P

(make paragraph

first-line-start-indent: (* 2 (actual-font-size))))

3.3.2 Selectors

Selectors in DSSSL are simple. Unlike CSS, much of DSSSL's logic for setting
property values on a specific element is found in the declarations rather than in the
selectors. Selectors form the first part of construction rules. There are five types of
construction rules and each one is described below.

For a given element in a document, only one construction rule can fire. This is
different from CSS where several selectors can match one element. Like CSS
selectors, DSSSL construction rules have a specificity to determine which
construction should be used.

3.3.2.1 Element construction rule

Element construction rules are the most common type of construction rules.
Elements are selected based on their type:

(element h1 (make paragraph ...))

Also, contextual selectors can be written as element construction rules:

(element (ol li) (make paragraph ...))

(element (html body div h1) (make paragraph ...))

Chapter 3: Style sheets prior to the web

95



The first selector in the above example selects li elements that are children of ol
elements. The second selector lists three elements that must be immediate ancestors
of the h1 element in order to match.

To write more complex queries DSSSL's Standard Document Query Language can
be used along with conditional expressions. Here is an example that selects elements
based on the existence of an attribute:

(element NOTE

(if (not (node-list-empty? (attribute "WARNING")))

...

...))

In the above example, NOTE elements with a WARNING attribute are selected. Here is
another example which selects all P elements that are first children:

(element P

(if (absolute-first-sibling? (current-node))

...

...))

By combining the query language with the mathematical expressions offered by
DSSSL, some interesting selectors can be constructed:

(element TR

(if (= (modulo (child-number) 2)

0)

...   ;even-row

...)) ;odd-row

The example above will allow style sheets to set values on every other row in an
HTML table.

3.3.2.2 Root construction rule

The root construction rule selects the root element, independent of its name. Here is
an example:

(root (sequence

font-family-name: serif-font-family))

3.3.2.3 Default construction rule

The default construction rule is used to set rules for all properties. Consider this
example:

Cascading Style Sheets

96



(default (sequence

font-family-name: serif-font-family))

3.3.2.4 Query construction rule

The query construction rule is not supported by the leading DSSSL implementation
(Jade [Clark 1998]) and therefore is not widely used.14 I have found only one code
example (from [Martin 1999]) that uses query construction rules:

(query q-class 'pi )

(make paragraph

literal "Processing instruction: "

(node-property 'system-data

(current-node))

)

)

The above code would select all processing instructions (pi) in a document and print
their names preceded by the string “Processing instruction”. Prescod states that “... you
can use conditional expressions to do basically the same things with more work”
[Prescod 1997a]. See Element construction rule above for some examples.

3.3.2.5 ID construction rule

The ID construction rule is used to select elements based on their ID. Consider this
HTML example:

<P ID="x678y">An S-expression is a list

of function calls and their arguments.</P>

The P element in the example above can be selected with this ID construction rule:

(id ("x678y")

(make paragraph))

3.3.3 Properties

DSSSL provides a comprehensive set of more than 200 properties (called characteristics

in DSSSL terminology) to describe the rendering of content.15

14 The query construction rule should not be confused with the core query language which has been
implemented and is in use.
15 This author has counted 213 properties altogether, excluding properties only used on the
math flow objects.

Chapter 3: Style sheets prior to the web

97



As in other style sheet languages, not all properties apply to all elements. In
DSSSL, each type of flow object accepts a subset of the properties. For example, the
paragraph flow object accepts all font-related properties (amongst others) while the
simple-page-sequence flow object accepts properties to set page margins.
Conceptually, DSSSL flow objects are similar to XSL formatting objects discussed in
the previous chapter, but there is no XML syntax for DSSSL flow objects.

In Table 5, the DSSSL flow objects are listed along with the properties they
accept. It is beyond the scope of this thesis to describe the flow objects and associated
properties in more detail, but the table will give an indication of the complexity of
DSSSL. A question mark after a property name indicates that the property only
accepts a true/false value.

Table 5: DSSSL's flow objects and associated properties.

Flow object Properties

Sequence none, this is a container for other flow objects

Display-group
coalesce-id, position-preference, space-before, space-after, keep-with-previous?, keep-with-next?,
break-before, break-after, keep, may-violate-keep-before?, may-violate-keep-after?

Simple-page-sequence
page-width, page-height, left-margin, right-margin, top-margin, bottom-margin, header-margin,
footer-margin, left-header, center-header, right-header, left-footer, center-footer, right-footer,
writing-mode

Page-sequence
initial-page-models, repeat-page-models, force-last-page, force-first-page, blank-back-page-model,
blank-front-page-model, justify-spread?, page-category, binding-edge

Column-set-sequence
column-set-model-map, column-set-model, position-preference, span, span-weak?, space-before,
space-after, keep-with-previous?, keep-with-next?, break-before, break-after, keep,
may-violate-keep-before?, may-violate-keep-after?

Paragraph

lines, asis-truncate-char, asis-wrap-char, asis-wrap-indent, first-line-align, alignment-point-offset,
ignore-record-end?, expand-tabs?, line-spacing, line-spacing-priority, min-pre-line-spacing,
min-post-line-spacing, min-leading, first-line-start-indent, last-line-end-indent, hyphenation-char,
hyphenation-ladder-count, hyphenation-remain-char-count, hyphenation-push-char-count,
hyphenation-keep, hyphenation-exceptions, line-breaking-method, line-composition-method,
implicit-bidi-method, glyph-alignment-mode, font-family-name, font-weight, font-posture,
font-structure, font-proportionate-width, font-name, font-size, numbered-lines?, line-number,
line-number-side, line-number-sep, quadding, last-line-quadding, last-line-justify-limit,
justify-glyph-space-max-add, justify-glyph-space-max-remove, hanging-punct?, widow-count,
orphan-count, language, country, position-preference, writing-mode, start-indent, end-indent,
span, span-weak?, space-before, space-after, keep-with-previous?, keep-with-next?, break-before,
break-after, keep, may-violate-keep-before?, may-violate-keep-after?

Paragraph-break

The first-line-start-indent characteristic is applicable to the line following a paragraph-break flow object,

and the last-line-end-indent characteristic is applicable to the line preceding a paragraph-break flow

object.

Line-field
field-width, field-align, writing-mode, inhibit-line-breaks?, break-before-priority,
break-after-priority

Sideline sideline-side, sideline-sep, color, layer, line-cap, line-dash, line-thickness, line-repeat, line-sep

Cascading Style Sheets

98

http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-86.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-87.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-88.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-89.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-90.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-91.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-92.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-93.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-94.htm


Flow object Properties

Anchor
anchor-keep-with-previous?, display?, span, span-weak?, inhibit-line-breaks?, break-before-priority,
break-after-priority

Character

char, char-map, glyph-id, glyph-subst-table, glyph-subst-method, glyph-reorder-method,
writing-mode, font-family-name, font-weight, font-posture, math-font-posture, font-structure,
font-proportionate-width, font-name, font-size, stretch-factor, hyphenate?, hyphenation-method,
kern?, kern-mode, ligature?, allowed-ligatures, space?, inline-space-space,
escapement-space-before, escapement-space-after, record-end?, input-tab?,
input-whitespace-treatment, input-whitespace?, punct?, break-before-priority

Leader
length, truncate-leader?, align-leader?, min-leader-repeat, inhibit-line-breaks?,
break-before-priority, break-after-priority

Embedded-text direction, language, country, inhibit-line-breaks?

Rule

orientation, length, color, layer, line-cap, line-dash, line-thickness, line-repeat, line-sep,
position-point-shift, inhibit-line-breaks?, break-before-priority, break-after-priority,
display-alignment, start-indent, end-indent, writing-mode, span, span-weak?, space-before,
space-after, keep-with-previous?, keep-with-next?, break-before, break-after, keep,
may-violate-keep-before?, may-violate-keep-after?

External-graphic

display?, scale, max-width, max-height, entity-system-id, notation-system-id, color, layer,
position-preference, display-alignment, start-indent, end-indent, writing-mode, span, span-weak?,
space-before, space-after, keep-with-previous?, keep-with-next?, break-before, break-after, keep,
may-violate-keep-before?, may-violate-keep-after?, position-point-x, position-point-y,
escapement-direction, inhibit-line-breaks?, break-before-priority, break-after-priority

Included-container-area

display?, filling-direction, width, height, contents-alignment, overflow-action, contents-rotation,
scale, position-preference, display-alignment, end-indent, writing-mode, span-weak?, space-before,
space-after, keep-with-previous?, keep-with-next?, break-before, break-after, keep,
may-violate-keep-before?, may-violate-keep-after?, position-point-x, position-point-y,
escapement-direction, inhibit-line-breaks?, break-before-priority, break-after-priority

Score
type, score-spaces?, color, layer, line-cap, line-dash, line-thickness, line-repeat, line-sep,
inhibit-line-breaks?, font-family-name, font-weight, font-posture, font-structure,
font-proportionate-width, font-name, font-size

Box

display?, box-type, box-open-end?, background-color, background-layer, box-corner-rounded,
box-corner-radius, box-border-alignment, box-size-before, box-size-after, color, layer, line-cap,
line-dash, line-thickness, line-repeat, line-sep, line-miter-limit, line-join, writing-mode,
position-preference, inhibit-line-breaks?, break-before-priority, break-after-priority, start-indent,
end-indent, span, span-weak?, space-before, space-after, keep-with-previous?, keep-with-next?,
break-before, break-after, keep, may-violate-keep-before?, may-violate-keep-after?

Side-by-side
side-by-side-overlap-control, position-preference, space-before, space-after, keep-with-previous?,
keep-with-next?, break-before, break-after, keep, may-violate-keep-before?,
may-violate-keep-after?

Side-by-side-item start-indent, end-indent, side-by-side-pre-align, follows, side-by-side-post-align

Glyph-annotation
annotation-glyph-placement, annotation-glyph-style, inhibit-line-breaks?, break-before-priority,
break-after-priority

Alignment-point none

Aligned-column display-alignment, start-indent, end-indent

Multi-line-inline-note
open, close, inline-note-line-count, inline-note-style, inhibit-line-breaks?, break-before-priority,
break-after-priority

Emphasizing-Mark
mark, mark-distribution, mark-style, inhibit-line-breaks?, break-before-priority,
break-after-priority

Chapter 3: Style sheets prior to the web

99

http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-95.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-96.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-97.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-98.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-99.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-100.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-101.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-102.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-103.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-104.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-105.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-106.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-107.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-108.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-109.htm
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-110.htm


Flow object Properties

Flow object Properties

Table

table-width, table-auto-width-method, table-border, before-row-border, before-column-border,
after-column-border, table-corner-rounded, table-corner-radius, position-preference,
display-alignment, end-indent, writing-mode, span, span-weak?, space-before, space-after,
keep-with-previous?, keep-with-next?, break-before, break-after, keep, may-violate-keep-before?,
may-violate-keep-after?

Table-part
table-part-omit-middle-header?, table-part-omit-middle-footer?, space-before, space-after,
keep-with-previous?, keep-with-next?, break-before, break-after, keep, may-violate-keep-before?,
may-violate-keep-after?

Table-column column-number, n-columns-spanned, width, display-alignment, start-indent, end-indent

Table-row (none, this is a container for other flow objects)

Table-cell

column-number, n-columns-spanned, n-rows-spanned, cell-before-row-margin,
cell-after-row-margin, cell-before-column-margin, cell-after-column-margin, cell-row-alignment,
cell-background?, background-color, background-layer, cell-before-row-border,
cell-after-row-border, cell-before-column-border, cell-after-column-border, starts-row?,
ends-row?, line-cap, line-dash, line-thickness, line-repeat, line-sep, float-out-sidelines?,
float-out-marginalia?, float-out-line-numbers?

Table-border
border-priority, border-alignment, border-omit-at-break?, color, layer, line-cap, line-dash,
line-thickness, line-repeat, line-sep, line-miter-limit, line-join

Flow object Properties

Scroll
filling-direction, writing-mode, background-color, background-layer, background-tile, start-margin,
end-margin

Multi-mode multi-modes, principal-mode-simultaneous?

Flow destination

Marginalia marginalia-sep, marginalia-side, marginalia-keep-with-previous?

Most properties in DSSSL are relative to writing direction, rather than being
absolute. For example, the DSSSL margin properties on the paragraph flow object
are called start-margin and end-margin rather than the margin-left and
margin-right that CSS uses. However, page margins are set with absolute
properties, including left-margin and right-margin.

3.3.4 Values and units

DSSSL offers a simple set of of values and units also found in other style sheet
languages, as well as the ability to let values be lists and advanced expressions.

The most frequently used DSSSL values are:

• keywords (e.g. 'bold): keywords start with an apostrophe (') to indicate that no
further processing should be performed;

• boolean values: true/false are represented by #t and #f, respectively; and

Cascading Style Sheets

100

http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-112.htm#AEN11597
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-112.htm#AEN11772
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-112.htm#AEN11848
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-112.htm#AEN11926
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-112.htm#AEN11934
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-112.htm#AEN12060
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-113.htm#AEN12138
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-113.htm#AEN12176
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-113.htm#AEN12198
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/h3-113.htm#AEN12206


• length values: the base length unit for DSSSL is the meter, m. Pre-defined
derived units are: cm, mm, in, pt, pica.

Here is a simple example of a value and unit in DSSSL:

(element H1

(make paragraph

font-size: 20pt))

In the above example, the font size of H1 elements is set to a fixed size.
Notably missing from the list of units are relative units, e.g. the em unit used in

FOSI (and later in CSS). Jon Bosak presents one way of supporting the em unit in
DSSSL [Bosak 1996a]:

(define %visual-acuity% "normal")

;; (define %visual-acuity% "presbyopic")

;; (define %visual-acuity% "large-type")

(define %bf-size%

(case %visual-acuity%

(("normal") 10pt)

(("presbyopic") 12pt)

(("large-type") 24pt)))

(define-unit em %bf-size%)

In the example above, one em is set to be an absolute measurement equal to the
height of a base font. The size of the base font depends on the visual-acuity
variable. This definition of em makes it an absolute unit.

Typically, however, the em unit is relative to the font size of the element itself or
the font size of the parent element. This can also be expressed in DSSSL. Consider
this example:

(element H1

(make paragraph

font-size: (* 2 (inherited-font-size))))

The expression (* 2 (inherited-font-size)) refers to the font size inherited
from the parent element and multiplies it by two before assigning it to the H1
element. This example shows that DSSSL turns to expressions for quite simple
operations and that expressions can be very powerful. Expressions in DSSSL extend
well beyond even the most advanced units. Consider this example:

Chapter 3: Style sheets prior to the web

101



(element H1

(make paragraph

font-size: (+ 4pt (inherited-font-size))))

The example above sets the element's font size to be 4pt larger than the parent
element's font size. These kinds of values are not possible without expressions.

3.3.5 Value propagation

DSSSL has a simple model for value propagation. Properties are classified as inherited
or non-inherited. All inherited properties have an initial value, and all
non-inherited properties have a default value which serves the same purpose. In
general, DSSSL and CSS agree on on which properties are inherited.

3.3.6 Visual formatting model

DSSSL has a rich formatting model with emphasis on producing printed output. A
DSSSL style sheet can specify multi-column layout, footnotes, sidenotes, tables and
other advanced constructs. Central to the DSSSL formatting model is the notion of
flow objects and areas.

3.3.6.1 Flow objects

DSSSL defines the visual appearance of a formatted document in terms of property
values attached to a tree of formatting objects, called flow objects in DSSSL. The
first step in the DSSSL formatting process is to construct the flow object tree from
the source document. This process is a tree transformation process, and it is no
coincidence that DSSSL is also a tree transformation language.

DSSSL defines around 35 types of flow objects (including flow objects for tables
and online display, excluding mathematics). DSSSL's flow objects and their
associated properties are listed in the “Properties” section above. Two commonly used
flow objects are paragraph (seen in previous examples) and
simple-page-sequence. Below is a simple example of using
simple-page-sequence to set margins on pages:

Cascading Style Sheets

102



(root

(make simple-page-sequence

left-margin:            1in

right-margin:           1in

top-margin:             1in

bottom-margin:          1in

(process-children)))

The example is from [Germán 1997]. More advanced flow objects allow content, for
example, to be presented in a multi-column layout, to appear in side notes and to
generate footnotes. One missing feature is that of floating images with surrounding
text.

A significant amount of work has gone into DSSSL to make sure the flow objects
can support multi-directional text.

3.3.6.2 Areas

The second part of the DSSSL formatting process is to produce a sequence of
rectangular areas from the tree of flow objects. The DSSSL specification claims to
not fully describe areas (“The nature of these areas is not fully specified by this International
Standard” [DSSSL 1996]), but they seem to be described at the level of detail
comparable with other style sheet languages.

Areas have a fixed width and height. There are two types of areas: inline areas
that are part of lines, and display areas that are not part of lines. Typically, display
areas are block-level containers for other content.

3.3.7 Linking mechanism

Neither SGML nor the DSSSL specification describe how to link style sheets to
source documents. Typically, DSSSL implementations look for SGML processing
instructions in the source document. For example, Jade [Clark 1998] recognizes two
types of processing instructions:

<?stylesheet href="sysid" type="text/dsssl">

<?dsssl sysid>

In the above example, sysid is a system identifier which typically is a file name.

Chapter 3: Style sheets prior to the web

103



3.3.8 Generated content

DSSSL has strong functionality for generated content. Through expressions, several
chunks of different styles can be associated with any element. Here is a simple
example from [Prescod 1997a]:

(element note (make paragraph font-size: 12pt

(make sequence

font-weight: 'bold

(literal "Warning:"))

(process-children)))

The above example adds the string “Warning” before the content of the note
element.

3.3.9 Other formatting contexts

Not proposed.

3.3.10 DSSSL in context

DSSSL was received enthusiastically by SGML experts when released in 1996. Erik
Naggum wrote [Naggum 1994]:

this is the best thing that happened to the world of SGML since SGML itself, maybe
more than that [...] this is good stuff. this deserves to become an International Standard
[...] DSSSL is a solid piece of work.

However, the implementation experience and actual use of DSSSL has been limited
[DuCharme 2001]. There are, I believe, two major reasons for this: the specification
itself and the outside world.

First, the specification itself is difficult to read unless you are an SGML expert.
The terminology used in the specification is precise, but terse. One example of
DSSSL terminology is the acronym sosofo, which expands to specification of sequence of
flow objects.

Also, the Scheme-based language used to express style sheets is unfriendly to
non-programmers. The language uses nested parentheses extensively and in order to
learn Scheme you need to “get over your fear of parentheses” [Radestock 2004]. Some
SGML experts did not consider the syntax to be a problem [Milowski 1997]:

Cascading Style Sheets

104



The fact that perl succeed with a rather cryptic language syntax suggests that it is not the
syntax but what the language can do that makes something succeed. If I can transform my
documents with a few lines of DSSSL code with parenthesis galour, I win over some other
language in which it takes me many more! (not intended to rhyme) This should be our
goal for extending DSSSL–simple clear descriptions of what should be done–not a change
of syntax.

Second, when DSSSL emerged in 1996 after ten years in development the outside
world had changed. Printing SGML documents was no longer the main challenge
for structured documents. Instead, HTML and the web had arrived but DSSSL was
not targeted for the web. It could not could not express common HTML
presentations (e.g. the styling of visited and active links). A DSSSL profile targeted
for the web was developed (called “DSSSL Lite”, which is discussed in the next
chapter) but did not gain much momentum.

Measured by usage, DSSSL did not succeed as a style sheet language. However,
the DSSSL specification has been influential for other style sheet languages,
especially in the area of multi-directional layout. The DSSSL community has since
developed XSL [XSL 2001] inside W3C.

3.4 P94
The P language was developed by Vincent Quint and Irène Vatton as part of their
long-standing research on structured documents at INRIA in Grenoble
[Thot 2001]. Together, the “T” language (for Transformation), the “S” (for
Structure) and “P” (for Presentation) form the Thot languages. These are supported
by a software library known as the Thot library. The purpose of the Thot library is to
facilitate the creation of “document centered applications based on the concept of structured
active documents”.

The work on Thot started in 1983 and initial results were first published in 1986.
Several industry collaborations followed and Thot formed the core of several
commercial products, including Grif and Symposia. In 1995, INRIA became the
European host of the World Wide Web Consortium, and Vincent Quint and Irène
Vatton joined as W3C staff in 1996. The work on Thot continued in W3C's Amaya
Web editor which uses the Thot library. Amaya is a test-bed application for W3C
specifications, and CSS, XHTML, SVG, MathML and XML are experimentally
supported by Amaya. Typically, Amaya adds support for a new specification by
translating the external language into one of the internal languages (P, S or T).
Amaya's formatter is built around the P language and the default formatting of the

Chapter 3: Style sheets prior to the web

105



markup languages supported by Amaya is described in P. Also, Amaya supports CSS
by generating P rules that are subsequently interpreted by the formatter.

In order to support CSS in Amaya it was necessary to extend the P language in
some areas. For example, all CSS length units are now supported in P and a set of
properties have been added to support padding, borders and margins around
elements. For research purposes, it is interesting to study the P language before the
influx of CSS and the web. The discussion below is therefore based on the P
language as it existed in 1994 and is referred to as P94 [Quint 1994].

3.4.1 Syntax

Style sheets in P94 are called presentation schema. They have two main parts:
declarations and rules. Here is a small, but quite advanced, style sheet in P94:

PRESENTATION HTML;

COUNTERS

H2Counter : Set 0 on H1 add 1 on H2;

DEFAULT

BEGIN

Size: Enclosing =;

Weight: Enclosing =;

END;

RULES

H2:

BEGIN

Size: Enclosing + 4 pt;

Weight: Bold;

END;

END

The first line declares what kind of documents the style sheet applies to. The style
sheet above applies to HTML documents. The “HTML” string is arbitrary; it is the job
of the Thot system to associate the style sheet with the document.

The above example only has one declaration; the COUNTERS section specifies
that the counter called H2Counter is set to zero when an H1 element is found, and is
incremented by one when an H2 element is found in a pre-order traversal of the
document tree. (The counter is only declared in the above style sheet, and not
actually used.)

In the above example, there are two sections containing rules: DEFAULT and
RULES. A block of rules starts with the word BEGIN and ends with END;. The first

Cascading Style Sheets

106



block contains two rules. One specifies that font size should be inherited from the
parent element, and the second rule specifies that the font weight should be
inherited from the parent element. Rules in the DEFAULT section apply to all
elements unless overridden by other rules in the RULES section. In the example
above, the RULES section contains rules that only apply to H2 elements. The first
specifies that the font size should be 4pt larger than the parent element's font size,
and the second sets the font weight to bold.

P94 is a case-insensitive language. By convention, properties and values are
written in initial-cap, while other parts of the language are written in uppercase.

In several ways, the syntax of P94 is similar to the Pascal programming language
[Munson 1996]. Emphasis is put on declaring values before using them (e.g.
counters), and on enforcing a block structure (the Pascal keywords BEGIN and END

are used).

3.4.2 Selectors

As in DSSSL, selectors in P94 are simple. Only element names and attribute
names/values can be used as selectors. Here is a simple example:

H1: Size: 20 pt;

The selector in the above example is H1 which selects all H1 elements in the
document and sets the font size to 20 points. (The BEGIN and END keywords used in
the previous examples can be omitted since there is only one declaration associated
with the H1 selector.)

Selectors based on attribute names/values are written in the ATTRIBUTES
section of the style sheet. For example, to set the font size of all elements with a
warning attribute one could write:

ATTRIBUTES

warning:

Size: 25 pt;

More complex queries can also be written in P94 but the logic is placed in
declarations rather than in the selector. For example, to set values on all LI elements
within an OL element, one could write:

LI: BEGIN

if within OL Size: 10 pt;

END;

Chapter 3: Style sheets prior to the web

107



3.4.3 Properties

P94 has two types of rules, those containing a presentation parameter and those
containing a presentation function. Presentation parameters are similar to properties in
CSS and are discussed in this section. Presentation functions are used to create
presentation boxes and are discussed in the section on “Generated content” below.

Table 6 gives an overview of the properties in P94.

Table 6: Properties of P94.

P94
property

Corresponding CSS
functionality

Comment

LineSpacing line-height

Indent text-indent

Adjust text-align The Adjust property also accepts a LeftWithDots value to generate leaders.

Justify text-align Boolean property

Break white-space: nowrap
The Break property is boolean and tells whether the element can be broken
across several lines/pages.

NoBreak1 widows
The NoBreak1 property also accepts a length as a value (in addition to an
integer).

NoBreak2 orphans
The NoBreak2 property also accepts a length as a value (in addition to an
integer).

Gather -

The Gather property was introduced to handle large documents. Thot formats
only a part of the document, roughly the part that is displayed on the screen.
When the user moves around in the document, a new part is formatted and the
resources used by the part that is no longer displayed are released. The issue is
to decide how much has to be formatted when something new has to be
displayed. For example, by associating the Gather property with an equation,

one can tell the formatter “when you start formatting an equation, format it all or

don't format it at all, but do not stop in the middle”. This functionality is not found in
any other style sheet language discussed in this thesis.

Visibility visibility
Levels of visibility can be attached to elements to selectively hide elements below
a certain threshold.

Size font-size
The legal values for the Size property are discussed in the “Length units” section
below.

Font font-family Only three values are accepted: Times, Helvetica, and Courier.

Style font-style/font-weight
Style accepts the following keywords: Roman, Bold, Italics, BoldItalics,
Oblique, BoldOblique.

Underline text-decoration

Thickness - Describes the thickness of the underlining and can either be thick or thin.

Depth z-index

Content content

VertRef - Positions the “reference axis”, which is used for positioning boxes, vertically.

HorizRef - Positions the “reference axis”, which is used for positioning boxes, horizontally.

VertPos margin/padding

Cascading Style Sheets

108



P94
property

Corresponding CSS
functionality

Comment

HorizPos margin/padding

Height height

Width width

With just over 20 properties, P94's property set is much smaller than those of
FOSI or DSSSL. Still, P94 is a highly functional style sheet language which, in
several respects, offers more functionality than the other languages. There are several
explanations for this seeming discrepancy. First, P94 often combines into one
property functionality that others split into several properties. For example, the
Style property in P94 describes both font weight and font posture. Second, P94's
constraint-based box model is able to reduce the number of properties by expressing
quite complex geometrical relationships as values. Third, some property-intensive
functionality offered by other languages is not available in P94. Examples include
element borders (beyond simple horizontal and vertical rules), foreground and
background colors, word- and letter-spacing.

3.4.4 Values and units

Values and units in P94 can be divided into a traditional part and a novel part. The
traditional part comprises the keywords and length units that are similar to those
used in other style sheet languages. The novel part is made up of the values that are
able to express constraints between elements and the elastic values.

3.4.4.1 Length units

Length units (called distance units in P94) can be absolute or relative. The absolute
length units are: centimeters (cm), inches (in) and typographic points (pt, 1/72
inch).

P94 also has a relative length unit similar to the em unit in FOSI and CSS. This is
expressed with a number without a unit identifier:

H2: Width: 20;

The example above sets the width of H2 elements to be 20 times the height of the
current font.

Chapter 3: Style sheets prior to the web

109



On the Size property, which describes the font size of the element, a unit-less
number has another meaning. Size accepts an integer value between 1-6 (inclusive)
which points into a table of font sizes kept by the application.

H2: Size: 3;

P94 has no concept of initial values. The application is responsible for setting an
initial value if no default value exists.

3.4.4.2 Constraints

Constraints form an important part of values in P94. Most style sheet languages are
able to express some form of constraints. For example, one simple constraint can set
the font size of an element to be 50% larger than the parent element.

Another kind of constraint supported by P94 concerns the maximum and
minimum values which is accepted on the Size property. Consider this example:

LI:

Size : Enclosing - 2pt Min 7;

H1:

Size : Enclosing + 2 Max 5;

The first rule in the example above states that the font size of LI elements is 2 points
less than that of the parent element, but that it may not be less than 7 points. The
second rule states that the font size of H1 elements should be two sizes larger than
the surrounding text, but not larger than 5. In both examples, the values that come
after Min/Max takes the same unit as the value before Min/Max.

3.4.4.3 Elastic values

P94 has a notion of “authorizing the user to choose dimensions” for certain elements.
Length values can be influenced by the users and are called elastic values. The Width
and Height properties accept the Userspecified keyword in addition to a length
value.

GraphElem: BEGIN

Width: 2 cm Userspecified;

END

The example expresses that GraphElem elements have a 2cm width by default, but
users may change the width.

Elastic values can be considered a form of cascading; one style sheet explicitly
hands over control of some aspect of document formatting to the user. However,

Cascading Style Sheets

110



elastic values are only used in a limited manner in P94. The control that the style
sheet defers to the user is meant to be filled in by user interaction rather than a
separate user style sheet.

3.4.5 Value propagation

P94 offers three mechanisms to avoid setting all values for all properties for all
elements. First, the DEFAULT section of the style sheet contains declarations used by
default. Second, inheritance can transfer values for textual properties from nearby
elements. Third, geometrical constraints can be established between boxes and
thereby transfer values from one box to another.

Consider this example:

DEFAULT

Depth: 0;

Size: Enclosing =;

The DEFAULT section in the example above contains two rules. The first rule sets the
default value of Depth to be zero. The second rule sets the default size of all elements
to be equal to the size of the parent (Enclosing in P94 terminology) element. That
is, the rule declares that the Size property is inherited.

P94 relies less on inheritance of property values than most other style sheet
languages. No values are inherited automatically and inheritance can only be
specified for certain properties (Justificy, LineSpacing, Font, Style, Size,
Visibility, and Indent). Values can be inherited from the parent element
(Enclosing) as well as the child element (Enclosed) and the older sibling
(Previous).

Inheritance in P94 follows the logical structure of elements, therefore, generated
content cannot transmit any values by inheritance.

Here is an example of inheriting a value from a child element:

RULES

PRE: Width: Enclosed . Width;

In the example above, the width of PRE elements is set be the width of its enclosed
box. That is, the width of the PRE element will be determined by its content,
so-called inside-out formatting. While the PRE element doesn't have any child
elements in the logical structure of elements, the contents of the PRE element form a
box which can be referred to.

Chapter 3: Style sheets prior to the web

111



Geometrical constraints between boxes is the third type of value propagation
mechanism in P94. This mechanism uses some of the same keywords (Enclosing,
Enclosed, Previous) as the inheritance mechanism and, therefore, can be
confusing. While inheritance only works for textual properties, geometrical
constraints are used to position boxes. Also, geometrical constraints can refer to
Next and Referred elements.16

For an example of a geometrical constraint, see the Visual formatting model below.

3.4.6 Visual formatting model

The P94 formatting model is based on a hierarchy of rectangular boxes. There are
three types of boxes:

• boxes corresponding to elements in the document structure;

• presentation boxes that are generated; and

• page layout boxes.

Boxes corresponding to elements in the document structure form a tree structure
identical to the structure of the document. This tree expresses the inclusion
relationships between the boxes: a box includes all the boxes of its subtree.

Presentation boxes represent elements which are not found in the logical
structure of the document but which are added based on the existence of logical
elements. This corresponds roughly to the pseudo-elements in CSS. For example, a
presentation box can be used to add “Chapter” before each H1 element. See the
section on Generated Content.

Page layout boxes are boxes created implicitly by the page layout rules. These
rules indicate how the contents of a structured element must be broken into lines
and pages. In contrast to presentation boxes, these line and page boxes do not
depend on the logical structure of the document but, rather, on the physical
constraints of the output devices: character size, height and width of the window on
the screen or of the sheet of paper.

The formatting model P94 supports advanced formatting features such as
footnotes, change marks, tables, and mathematics. One missing feature is that of
floating images with text around them.

16 In a description of the P language from 1993 [Grif 1993], the value is spelt Refered. This
spelling mistake is remarkably similar to the spelling of Referer in HTTP, with the exception
that the mistake remains in HTTP to this day [HTTP 1999].

Cascading Style Sheets

112



3.4.7 Linking mechanism

In the S language, a default style sheet can be specified for each type of document.
When the user creates a new document of that type, the editor uses the default style
sheet. The user can specify another style sheet, and the editor will reformat the
document accordingly. When the user saves the document, the current style sheets
are recorded in the document itself.

3.4.8 Generated content

P94 has rich functionality to generate content in addition to the content in the
document. For example, here is the code to add the text “Chapter x:” before all H1
elements (where “x” is replaced by an incrementing chapter number):

COUNTERS

ChapterNumber: set 0 on BODY add 1 on H1;

BOXES

ChapNumBox: BEGIN

Content: (text 'Chapter ' value(ChapterNumber, Arabic) text':');

...

END;

RULES

H1: BEGIN

CreateBefore (ChapNumBox);

...

END;

The box to be generated before each H1 element is described in the BOXES section
in the above example. The creation of the box is initiated by the presentation
function CreateBefore.

In the example above, the chapter number is added before every H1 element. P94
offers a set of logical expressions to indicate that the presentation function should
only be called in certain conditions. Consider this example:

Chapter 3: Style sheets prior to the web

113



Column:

BEGIN

CreateBefore (VertRule);

IF LAST CreateAfter(VertRule)

Width: 2.8cm;

Height: Enclosed.Height;

VertPos: Top = Enclosing.Top;

HorizPos: Left = Previous.Rightl

END;

In the example above, the CreateBefore presentation function is called for every
Column element, but the CreateAfter function is only called if the Column
element is the last in a set of siblings. P94 offers around 30 other conditions which
can be tested before calling a presentation function.

3.4.9 Other formatting contexts

3.4.9.1 Views

Central to P94 is the notion of views. Views can be thought of as several style sheets
in one, and one P94 style sheet can describe several views. Examples of commonly
used views are formatted view, source code view and table of contents. For example,
Amaya can show different views at the same time (e.g., the formatted document can
be shown in one window, and the table of contents in another window), and the
user can edit in all views.

Cascading Style Sheets

114



PRESENTATION HTML;

VIEWS

Formatted_view,

Table_of_contents;

COUNTERS

H2Counter : Set 0 on BODY add 1 on H1;

H2Counter : Set 0 on H1 add 1 on H2;

DEFAULT

BEGIN

Size: Enclosing =;

Weight: Enclosing =;

END;

H1:        BEGIN

Size: Enclosing + 6 pt;

Weight: Bold;

IN Table_of_contents

Size: Enclosing + 2 pt;

END;

H2:        BEGIN

Size: Enclosing + 4 pt;

Weight: Bold;

IN Table_of_contents

Visibility: 0;

END;

END

The example above adds a second view. In addition to Formatted_view (which is
the default since it comes first), a view called Table_of_contents has been added.
In this view, the font size of H1 elements is 2pt bigger than the parent (as opposed to
6pt bigger than the parent in the normal view), and H2 elements are not visible. In
Thot, views within a presentation schema are synchronized in semi-realtime: when
you select an element in one view, the other views are scrolled automatically to show
the same element.

Also, it is possible to write many different presentation schemas for the same
document [Quint 1994]:

Chapter 3: Style sheets prior to the web

115



Recall that it is possible to write many different presentation schemas for the same class of
documents or objects. This allows users to choose for a document the graphical appearance
which best suits their type of work or their personal taste.

Typically, a schema defines a consistent set of views that may be useful for
performing a particular type of task. For performing different types of tasks (drafting
an outline, writing, fine tuning presentation, reviewing, etc.) one would write
different sets of views, hence different schemas.

3.4.10 P94 in context

P94 was a powerful style sheet language in 1994. Combined with the “S” and “T”
languages, it formed a powerful package for processing structured documents. The P
language offers a rich set of stylistic functionality based on simple relationships
between elements. Among the style sheet languages described in this chapter, it
comes closest to expressing layout in terms of constraints between elements.

P94 was developed for one application (Thot) and was never standardized as a
style sheet language for use by other applications. I believe P94 would have been a
good style sheet language for SGML around 1990 and one that could have developed
into a suitable style sheet language for the web. The language is simple enough to be
understood by authors, yet powerful enough to express advanced typography. The
syntax, which may not be intuitive, may have been an argument against the use of
P94. However, the main reason why P94 never entered into the competition was
that the creators of P94 never proposed the use of P94 outside of Thot.

The P language has evolved from where it was in 1994. P now has properties to
describe borders around elements, foreground and background colors,
bi-directionality, hyphenation and more. These properties have been added in order
to support W3C specifications such as CSS and SVG. P continues to serve a useful
purpose as part of a test-bed application for new specifications.

3.5 Summary and conclusions
All style sheet languages share a set of common components. I propose the following
six components to be required in a style sheet language: syntax, selectors, properties,
values and units, value propagation mechanism, and formatting model. Most
formatting models are visual, but aural and tactile formatting models are also
possible. Also, many style sheet languages support generated content and a linking
mechanism.

Cascading Style Sheets

116



Style sheets existed before the web and this chapter has reviewed three seminal
systems: FOSI, DSSSL and P94. The main purpose of these style sheet languages was
for printing structured documents. All three systems fulfill the style sheet language
criteria that were established at the beginning of this chapter.

The next chapter discusses style sheet languages for the web and evaluate nine
different proposals by the same criteria used in this chapter.

Chapter 3: Style sheets prior to the web

117





Chapter 4:

Style sheet proposals for the web

The previous chapter described style sheet languages developed and used before the
web. This chapter will look at style sheet languages that were proposed specifically
for the web. Each proposal will be evaluated according to criteria established in the
previous chapter.

The web was launched without a style sheet language in place. CERN's libwww
library [Nielsen&Lie 1994], which formed the basis for many of the early web
browsers, had a notion of style sheets but these were hardcoded into the application
and could not be changed by authors or users. In order to allow authors and users to
influence the presentation of documents, a style sheet language is necessary.
However, around 1993 there was no obvious candidate for a web style sheet
language. As discussed in the previous chapter, DSSSL was still being developed,
FOSI was only in limited use, and P94 was not actively proposed for use on the web.
Unlike structured documents, where SGML had been the natural basis for the
development of HTML a few years earlier, no style sheet language had achieved a
similar status.

The first proposal for a style sheet language for the web appeared in 1993 and
since then the subject of style sheets was a recurring topic discussed on the www-talk
mailing list. In the period 1993-1995, eight different style sheet languages were
proposed in web forums, mainly on the www-talk [www-talk] mailing list. In 1996
one language was proposed in an academic paper [Munson 1996]. All nine proposals
are reviewed in chronological order in this chapter. The reviews are based on the
proposals themselves, discussions on www-talk and other mailing lists, and personal
communication with the authors. Some of the proposals have been implemented,
but I have not had implementations available when doing the reviews.

In August 1997, W3C received a “A Proposal for XSL” from several of its
members [NOTE-XSL 1997]. As a result of the submission, a working group on
XSL was formed and XSL became a W3C Recommendation in 2001 [XSL 2001].
In Chapter 2, XSL was discussed briefly in the context of style versus transformation.

119



However, XSL will not be analyzed further in this chapter because it falls outside the
time frame of the other proposals.

4.1 Robert Raisch's proposal (RRP)
This style sheet proposal [Raisch 1993a] was published in June 1993 by Robert
Raisch of O'Reilly & Associates Inc. It was the first style sheet proposal that was
specifically designed for the web. Part of the introduction was used to argue why the
web needed a style sheet language:

There is a need within the WWW to be able to specify rendering specific information
along with the content tagging in a WWW document. It is not appropriate to use
HTML for this purpose, since one of the first principles of HTML is to encode objects
within a document, not how they might be rendered in a particular environment.

RRP was included in full in the message sent to www-style. The text message is
around 700 lines and includes – in addition to the description of properties and
values – a sample style sheet for HTML and pseudo-code for an implementation of
RRP.

4.1.1 Syntax

The syntax of RRP is designed specifically for the proposal. It is compact (in order
to “minimize the time required to retrieve and interpret” style sheets), but not easy to read
for humans at first sight. Here is a fragment from the Example stylesheet which is
provided in an appendix of RRP:

@BODY fo(fa=he,si=18)

In the example above, two properties in the font (fo) category are set on the BODY
element. The font family (fa) is set to helvetica (he) and the font size (si) is set to
18 points.

The example above is typical for RRP and all statements follow the same pattern:
a selector is followed by one or more property/value pairs. All categories, properties
and keyword values are represented by two-letter codes.

4.1.2 Selectors

RRP has a simple selector mechanism which selects elements based on their name.
Elements cannot be selected based on other criteria such as their context or
attributes. Selectors take the form:

Cascading Style Sheets

120



@<element-name>

In addition to element names, there is one selector which sets default values:

@DEFAULT fo(fa=ti,sp=pr,si=14,we=me,sl=ro,fo=in,bo=in,li=no,nu=1,fn='')

The possible namespace conflict between DEFAULT and a future HTML element
with that name is not addressed. All selectors are written in uppercase in the
examples given in RRP, but the case-sensitiveness of RRP is not defined. As such,
RRP is immature but not more so than the first version of other style sheet
proposals.

4.1.3 Properties

RRP defines 35 properties that are grouped into eight property categories. The
properties span a wide range in functionality; they describe both basic formatting
primitives (such as the font and colors of an element) and also support some
advanced features. Table 7 shows the categories, their associated properties and
RRP's descriptive title of the categories.

Several property names (e.g., before, after) are used in different categories
(e.g., vert, link, mark) and mean something different in each category. The
grouping of properties is therefore necessary to disambiguate properties. Consider
this example:

@LI ve(af=10) ma(af=5) li(af=st)

Three properties, all named after are set in the above example. The first rule sets
the vertical space after an LI element to 10 units (see below for a discussion on
units). The second rule sets the distance between a mark (i.e., the list-item marker)
and the text of the element. The third rule describes links appearing inside LI
elements; the rule declares that links should have a star (*) after them.17

The concept of grouping properties into categories in RRP is similar to the
grouping found in FOSI. Table 8 lists all RRP categories along with similar FOSI
categories, and Table 9 compares the font category in RRP and FOSI.

There are several indications that RRP is influenced by FOSI. The grouping of
properties into categories are similar and use some of the same names. Also, many of
the names used for for properties and values often are identical.

17 RRP lists many possible marks (among them the star). However, the proposal does not
specify the two-letter keyword to refer to marks, and the st value in the example is, therefore,
a guess.

Chapter 4: Style sheet proposals for the web

121



Table 7: RRP's catetories and properties.

Category Properties

font (fo)
family (fa), spacing (sp), size (si), weight (we), slant (sl), foreground (fo), background (ba), line (li), number
(nu), longname (lo)

justify (ju) style (st), hyphen (hy), kern (ke)

column (co) num (nu), width (wi)

break (br) style (st), object (ob)

mark (ma) object (ob), preceed (pr), before (be), replace (re), succeed (su), after (af)

vert (ve) before (be), after (af), spacing (le), offset (of)

indent (in) left (le), right (ri), first (fi)

link (li) location (lo), mark (ma), line (li), number (nu), before (be), after (af), hide (hi)

Table 8: A comparison of categories in FOSI and RRP.

RRP category FOSI category

font font

justify quadding

column column

break textbrk

mark no similar category

vert vjinfo

indent indent

link no similar category

4.1.4 Values and units

RRP has four different kinds of values:

• two-letter keywords

• strings

• colors expressed as hexadecimal digits

• integers (called UNITS)

Here is an example which uses all four kinds of values:

@P fo(fa=ti fo='black' ba=0xffffff) co(nu=2,wi=10)

First, three values are set in the font category. The font family is set to times

(which is one of four different font family values), the foreground color is set to

Cascading Style Sheets

122



Table 9: A comparison of the font category in RRP and FOSI.

RRP
property
name

RRP values
FOSI property
name

FOSI values

family (fa)
times (ti), helvetica (he), system (sy),
typewriter (ty)

style (in font

category)
serif, sanserif, monoser, monosans

spacing (sp) monospace (mo), proportional (pr) no equivalent property

size (si) integer size (in font category)
length value using one of these units:
pi, pt, in, mm, cm, em

weight (we)
ultralight (ul), light (li), medium (me),
demibold (de), bold (bo)

weight (in font

category)

ultlight, exlight, light, semlight,
medium, sembold, bold, exbold,
ultbold

slant (sl) roman (ro), italic (it), oblique(ob)
posture (in font

category)

upright, oblique, bsobl (back-slanted
oblique), italic, bsital (back-slanted
italic)

foreground (fo)

Colors are specified as text names, (eg.
black, white, magenta), or as RGB color
values in hexadecimal (e.g. 0x000000,
0xffffff, 0xff00ff)

foreground (in
highlight category)

black, white, red, orange, yellow,
green, blue, violet, brown, gray

background (ba)

Colors are specified as text names, (eg.
black, white, magenta), or as RGB color
values in hexadecimal (e.g. 0x000000,
0xffffff, 0xff00ff)

background (in
highlight category)

bblack, bwhite, bred, borange,
byellow, bgreen, bblue, bviolet,
bbrown, bgray

line (li)
none (no), under (un), through (th), over
(ov)

set with scoring

offset property in
highlight category

a positive value will place the score
below the baseline, and a negative
value will place the score above the
baseline

number (no)
a numeric value indicating the number of
lines

scoring (in highlight

category)
a numeric value indicating the
number of lines

longname (lo)
string describing a platform-specific font
name

famname (in font

category)
string describing platform-specific
font name

black (which is one of several color names mentioned in the proposal), and the
background color to white (expressed in hexadecimal numbers). Thereafter, the
number of columns is set to 2, and the column width is set to 10.

The interpretation of the integer value depends on the property in question, as
well as the kind of object that the value is describing. For example, in the description
of the column width property, the proposal states:

In the case of a text object, UNITS might represent characters, while in the context of a
graphical object, UNITS could represent picture elements (pixels.)

The motivation for using one integer value and automatically switching between
different ways of interpreting the value is to simplify the syntax. For some properties

Chapter 4: Style sheet proposals for the web

123



this may be an acceptable solution, but for other properties where the number of
different units (as per CSS terminology) is high, the solution is insufficient. For
example, in RRP, font sizes can only be expressed in “typographic points”, while other
languages offer a number of different units.

4.1.5 Value propagation

RRP provides three mechanisms for value propagation. First, style sheets can specify
default rules for element/property combinations that are not specified explicitly. The
sample style sheet contains this fragment to set default values:

@DEFAULT fo(fa=ti,sp=pr,si=14,we=me,sl=ro,fo=in,bo=in,li=no,nu=1,fn='')

ju(st=le,hy=0,ke=0) co(nu=1,wi=80) br(lo=af,ob=it)

ma(ob=it,pr=no,be=0,re=no,su=no,af=0)

ve(be=0,af=0,sp=0,of=0) in(le=0,ri=0,fi=0)

li(lo=in,ma=no,li=un,nu=1,be=no,af=no,hi=0)

Second, each property has an initial value defined in the specification. Most values
set in the above example are redundant since the values are set to their initial values.

Third, inheritance can be specified on two properties: foreground and
background. Consider this excerpt from the above example (with one minor
spelling correction: bo has been changed to ba):

@DEFAULT fo(fo=in,ba=in)

In the above example, the foreground and background colors are set to inherit. In
effect, this turns the foreground and background properties into inherited
properties. Surprisingly, the inherit value (in) is not allowed on properties other
than foreground and background.

RRP's concept of inheritance (non-inherited properties, with an explicit
inherit value) is similar to FOSI's inheritance model.

4.1.6 Visual formatting model

RRP sketches a simple visual formatting model. The proposal is not complete
enough to get a full understanding of how it works and there is not enough
information to classify RRP into a either a box model or a sequence model.

Various break-related properties can be set to describe where line breaks occur.
This way, elements will appear as block-level or inline and the amount of space
before and after the element can be set.

Cascading Style Sheets

124



One advanced feature offered by RRP is multi-column layouts. The column
number and column width properties can, for example, be used to describe a
two-column page:

@BODY co(nu=2,wi=40)

There is, however, no way to set the space between columns. The proposal,
therefore, is not able to describe common cases of multi-column layouts.

4.1.7 Linking mechanism

RRP suggests using the LINK element to point to external style sheets, thus offering
authors the possibility to link their documents to style sheets of their own liking.
Here is the proposed syntax:

<LINK STYLE={URL}>

User style sheets were not part of the proposal and there is no discussion in the
proposal about authors versus reader preferences. However, the proposal limits the
role of style sheets to be “hints” or “suggestions” that “might” be used [Raisch 1993a]:

Rather, this is really a set of HINTS or SUGGESTIONS to the renderer which might
be used to display particular HTML objects in the fashion the author of a document
originally intended.

This policy leaves room for honoring user preferences in combination with author
style sheets.

4.1.8 Generated content

Not proposed.

4.1.9 Other formatting contexts

Not proposed.

4.1.10 RRP in context

RRP was the first proposal for a style sheet language specifically for the web. As
such, the proposal is groundbreaking and deserves credit for its early date of
publication. After the proposal was published in June 1993 it was briefly discussed on
the www-talk mailing list. However, the proposal was not developed further and the
author's own implementation was never published.

Chapter 4: Style sheet proposals for the web

125



RRP is ambitious in several areas. Advanced topics such as counters and
multi-column layouts are described. However, the descriptions of these topics are
not detailed enough to produce consistent implementations. Also, RRP is simplistic
in its approach to styling web documents. The most serious problem is probably the
lack of units on numerical values. As a first draft, however, the proposal is well worth
considering.

It seems clear that RRP was inspired by FOSI. The grouping of properties, the
property names, and the similar concept of inheritance indicate that the author knew
FOSI. FOSI is not referenced in the proposal, however.

RRP appeared at a time when the Mosaic browser development team was very
active. If it had been taken up by Mosaic at an early stage, it is likely that HTML's
presentation-oriented elements (e.g. FONT and CENTER elements) would not have
appeared. Instead, more properties and values would have been added to RRP's style
sheet language. As such, it is unfortunate that RRP was not implemented by web
browsers of the time.

4.2 Pei Wei's proposal (PWP)
In October 1993, four months after Robert Raisch's proposal was published, Pei
Wei published a brief proposal for a style sheet language on www-talk [Wei 1993a].
As the architect and programmer behind the ViolaWWW browser Pei Wei was in a
good position to implement a style sheet language. The ViolaWWW browser was
launched in 1992 [Wei 1992] and was among the first graphical web browsers.

Like Robert Raisch, Pei Wei was employed by O'Reilly and it was natural for the
community on www-talk to ask about the relationship between the two proposals
[Andreessen 1993b]:

From: Marc Andreessen (marca@ncsa.uiuc.edu)

Date: Fri, 22 Oct 93 23:48:42 -0700

What's the relationship between this and Rob Raisch's stylesheet

proposal from this summer? (Rob, are you out there? :-)

Cheers,

Marc

The above message shows that the Mosaic developers indeed were following the
development of style sheets. Robert Raisch's reply [Raisch 1993b] to Marc

Cascading Style Sheets

126



Andreessen was that he had left O'Reilly and that further questions should be
directed to them. Pei Wei sent this reply [Wei 1993b]:

Well, after Rob left ORA I've basically inherited the stylesheet

problem– finish the design, prototype, and final implementation.

As Rob has done the good work of writing the initial proposal,

I will try to reuse as much of the collected material as possible.

But there were and will be changes since Rob presented the proposal

this past summer.

Indeed, as the screenshot in Figure 3 testifies, style sheets were implemented in
ViolaWWW.

The document [Wei 1993d] shown in Figure 3 illustrates how PWP is supposed
to work. Along with the style sheets that describe its presentation, it is considered to
be part of the PWP proposal in order to make the proposal more complete. It is
referred to as the sample document.

4.2.1 Syntax

PWP includes a sample style sheet which is short enough to reprint in full:

Chapter 4: Style sheet proposals for the web

127



Figure 3: The PWP sample document rendered in Viola.

Cascading Style Sheets

128



(HEAD,BODY              fontSize=normal

BGColor=white

FGColor=black

(H1                 fontSize=largest

BGColor=red

FGColor=white)

(H2                 fontSize=large)

(P)

(A                  FGColor=red)

(CMD,KBD,SCREEN,LISTING,EXAMPLE fontFamily=fixed)

(BOLD,EMPH,STRONG           fontWeight=bold)

(I                  fontSlant=italic)

(ADDRESS

(P              fontSlant=italic))

(OL

(LI             numStyle=roman

(LI                 numStyle=number

(LI         numStyle=alpha)

)

)

)

(FOOTNOTE               fontSize=small

(P)

)

)

The most striking feature of the syntax is the use of parentheses. The syntax of PWP
is, like DSSSL, based on Lisp with its multi-level parentheses. Unlike DSSSL,
however, the multi-level parentheses in PWP do not express functions. Rather, they
express contextual selectors in the document structure. While having contextual
selectors is a powerful feature, human readability of style sheets arguably suffers when
multi-level parentheses are introduced in the syntax. Also, writability suffers since
the parentheses need to be balanced in order to write valid style sheets.

Pei Wei probably expected resistance to the proposed syntax and when asking for
feedback the syntax was explicitly mentioned:

Particularly, any problem with the the syntax of the style description language?

The syntax issue was one reason why Steve Heaney wrote an alternative proposal
(which is discussed next), but there were no other comments about the syntax on
www-talk.

Chapter 4: Style sheet proposals for the web

129



Since a PWP style sheet outlines the structure of the document, it can perceivably
also be used to prescribe the structure. For example, in addition to describing the
styling of H1 elements inside BODY elements, the style sheet fragment above can
express that H1 elements must only appear inside BODY elements. In SGML, DTDs
are used to express structural constraints, but PWP comes close to being able to
replace DTDs. This may be what the author refers to in the statement: “The lone
"(P)"s are there to engage the respective <P> tags to be in those particular contexts.”
[Wei 1993a]

4.2.2 Selectors

As discussed above, selectors are intrinsically built into the PWP syntax. By using
multi-level parentheses, contextual selectors can easily be expressed. In the sample
style sheet above, list items are given numbering styles depending on their level in
the structure: the first level is numbered in the roman style, the second in the
number style, and the third in the alpha style.

Although not explicitly described in PWP, it is clear that contextual selectors
express ancestor relationships, not parent-child relationships. Consider this
fragment:

(BODY

(BOLD,EMPH,STRONG           fontWeight=bold))

Given the structure of HTML, it is clear that BODY is an ancestor of BOLD, EMPH, and
STRONG rather than a parent (even if BOLD and EMPH are not HTML elements).

As seen above, selectors can be comma-separated lists of element names. There
are no provisions for selecting elements based on criteria other than name and
context.

4.2.3 Properties

One significant difference between RRP and PWP is the naming and grouping of
properties. PWP uses longer, more readable property names, and properties are not
grouped. This makes style sheets in PWP more readable.

The initial proposal does not contain a list of properties but the following
properties are used in the sample style sheet: fontSize, fontWeight, fontSlant,
fontFamily, numStyle, BGColor, FGColor.

The number of properties supported by Viola seems to have increased over time.
In the style sheets describing the sample document (Figure 3), these additional

Cascading Style Sheets

130



properties are used: fontSpacing, align, border, BDColor, blink,
blinkColorOn, blinkColorOff.

The set of properties listed above are sufficient for a proof-of-concept
implementation like ViolaWWW, but are not well-suited for a widely deployed style
sheet language for the web. For example, there are no properties to describe margins
and indentation, but blinking behavior is described (perhaps tounge-in-cheek) in
three properties.

4.2.4 Values and units

PWP style sheets use only two types of values: keywords and integers.
Keywords are by far the most common and the sample style sheet [Wei 1993a]

uses only keyword values. For example, the keyword values represent font sizes
(small, normal, large, largest), color names (red, maroon, grey70), and list
number types (roman, number, alpha). In general, the keyword values are
intuitively understandable. The list of color names is taken from X11 [X11].

Integer values are used on two properties: border and blink. Consider this
excerpt from [Wei 1993d]:

(BODY,HPANE,INPUT,P

(SECTION              border=1)

(P                    blink=1000))

The proposal does not fully describe how to interpret these values. The value of
border may represent the border width in pixels, while the value of blink may
represent the blinking interval in milliseconds.

As for properties, the set of available values would need further development.

4.2.5 Value propagation

PWP uses inheritance to propagate values from parent to child elements. From
[Wei 1993a]:

Note that properties are inherited down the tree, unless overridden. [..] Having this
inheritance behaviour also helps to keep the description short, as lots of information can be
derived by the context in the tree structure.

In addition, each property probably has an initial value in the ViolaWWW
implementation, but this is not described in the proposal.

Chapter 4: Style sheet proposals for the web

131



4.2.6 Visual formatting model

The description of the visual formatting model in PWP is not sufficiently complete
to review fully. However, some information can be gained by analyzing the
rendering of the sample document in Figure 3. ViolaWWW uses a box-based model
(the P elements inside the SECTION element are enclosed by the border attached to
the SECTION element). Also, PWP is able to align text within block-level elements
to the left or right side. It is unclear what makes block-level elements be narrower
than their containing block (e.g., the blue box with the ADDRESS element in it).
PWP does not describe how to classify elements as inline or block-level.

4.2.7 Linking mechanism

PWP uses HTML's LINK element to point to external style sheets. The proposal is
undecided about where LINK elements should be allowed:

A document uses a <LINK REL="STYLE" HREF="URL_to_a_stylesheet"> to
associate to a stylesheet. It's an open question as to whether we should allow multiple
stylesheets in a document, and where this link can be specified (once only, in the
<HEAD>?).

ViolaWWW allowed LINK elements to appear within the body of the document.
Here is a (somewhat shortened) fragment from the sample document:

<HTML>

<HEAD>

<LINK REL="style" HREF="../../viola/sgml/styles/HTML_sodium.stg">

</HEAD>

<BODY>

<H1>Simple stylesheets test</H1>

<LINK REL="style" HREF="../../viola/sgml/styles/HTML_address1.stg">

<P>Second stylesheet in effect starting from here. The text inside

the address paragraphs should be blinking.

<ADDRESS>

<P>wei@ora.com

<P>Digital Media Group, O'Reilly & Associates

</ADDRESS>

</BODY>

</HTML>

The purpose of having LINK elements interspersed in the content is to apply specific
style sheets to particular parts of the document. The same results can be achieved in a

Cascading Style Sheets

132



cleaner but perhaps less convenient way by restructuring the document (e.g., by
using DIV elements) and applying the style sheets to the resulting elements.

When links to style sheets were added later to HTML, they were restricted to
HEAD elements.

4.2.8 Generated content

Not proposed.

4.2.9 Other formatting contexts

Not proposed.

4.2.10 PWP in context

ViolaWWW was the first web browser that supported style sheets linked from
documents. This was quite an achievement, especially when considering that a single
person did the design and programming. Subsequent style sheet languages used
concepts pioneered by PWP, including the use of the LINK element to point to style
sheets on the web. As is expected from an experimental application, not all aspects of
PWP style sheets were successful and the proposal was quite immature when
published in 1993.

Based on the communication between Pei Wei and Marc Andreessen quoted
earlier, one could conclude that PWP evolved from RRP. However, this does not
seem to be the case. The proposals differ greatly. In particular, the syntax, the
selector mechanism, value propagation, and then names of properties/values of each
are fundamentally different.

ViolaWWW never gained the widespread use achieved by Mosaic, but it was an
influential application that inspired other developers. If style sheets had been
supported by ViolaWWW when the browser was first released in 1992, Mosaic and
other emerging browsers might have accepted the concept of style sheets at an earlier
stage.

4.3 Steve Heaney's proposal (SHP)
Four days after Pei Wei published PWP, Steve Heaney posted a message to
www-talk [Heaney 1993] where he argued for reusing FOSI rather than “re-inventing
the wheel”. Steve Heaney's proposal (SHP) consists of a style sheet that expresses

Chapter 4: Style sheet proposals for the web

133



approximately the same stylistic rules as the sample style sheet in PWP, but expressed
in FOSI. Further, SHP discusses the benefits and downsides of using a subset of
FOSI. It is a sketch rather than a full proposal, and the evaluation below is
correspondingly limited, therefore.

4.3.1 Syntax

The sample style sheet in SHP is short enough to reprint in full:

<outspec>

<docdesc>

<charlist>

<font size="12pt" bckcol="white" fontcol="black">

</charlist>

</docdesc>

<e-i-c gi="h1"><font size="24pt" bckcol="red", fontcol="white"></e-i-c>

<e-i-c gi="h2"><font size="20pt" bckcol="red", fgcol="white"></e-i-c>

<e-i-c gi="a"><font fgcol="red"></e-i-c>

<e-i-c gi="cmd kbd screen listing example"><font style="monoser"></e-i-c>

<e-i-c gi="bold emph strong"><font weight="bold"></e-i-c>

<e-i-c gi="i"><font posture="italic"></e-i-c>

<e-i-c gi="p" context="address"><font posture="italic"></e-i-c>

<e-i-c gi="li" context="ol"><counter style="romanlc"></e-i-c>

<e-i-c gi="li" context="ol li ol"><counter style="alphalc"></e-i-c>

<e-i-c gi="footnote"><font size="10pt"></e-i-c>

</outspec>

The proposal included only a brief explanation of the syntax:

(The e-i-c tag is element in context - I hope the rest are reasonably self evident).

Most participants in the www-talk mailing list, however, were not familiar with
FOSI, so the rest of the style sheet was not self-evident. For example, it is not
intuitively clear what the role of the docdesc and charlist elements are. SHP
mentions “FOSI” twice, but FOSI is not explained and there are no bibliographic
references to the FOSI specification.

SHP also lists the advantages and disadvantages of using a standardized
SGML-based syntax. According to SHP, the advantages include validation, the use
of existing tools, and expandability into full FOSI functionality. The main
disadvantages are that it was “less easy to read” and “less easy to write without assistance”.

Cascading Style Sheets

134



4.3.2 Selectors

Selectors in SHP are based on the name and the context of elements. In FOSI this is
expressed in the gi attribute and the context attribute, respectively. FOSI can also
express more advanced selectors (e.g., based on attributes), but these are not included
in SHP.

4.3.3 Properties

SHP is a direct response to PWP. The former's sample style sheet uses only
properties that are similar to those in PWP. Also, SHP lists “some of the other formatting
attributes that the FOSI DTD includes”: presp, postsp, indent, boxing, textbrk,
quadding. As such, SHP is primarily an argument for reusing a subset of FOSI
rather than a proposal for functionality needed by the web.

4.3.4 Values and units

SHP's sample style sheet uses a subset of the values defined in FOSI. Most of the
values used in PWP's sample style sheets are keywords for which equivalents exist in
FOSI. For example, roman in PWP becomes romanlc in SHP. Some of the
keywords cannot be translated; PWP's keyword values for font sizes (small,
normal, large, largest) have been translated into length values (10pt, 12pt,
20pt, 24pt) in SHP.

Adding keywords to represent font sizes in SHP would be simple, but SWP
would no longer be a subset of FOSI.

4.3.5 Value propagation

Not discussed.

4.3.6 Visual formatting model

Not discussed.

4.3.7 Linking mechanism

Not discussed.

Chapter 4: Style sheet proposals for the web

135



4.3.8 Generated content

Not discussed.

4.3.9 Other formatting contexts

Not discussed.

4.3.10 SHP in context

The response to SHP was mixed. One participant strongly endorsed the use of
SGML as syntactic basis [Burnard 1993]:

I'd like to endorse very strongly indeed the notion of using SGML as a notation for
whatever style-sheet mechanism you eventually decide on. I don't particularly mind
whether it's a FOSI-subset, or a DSSSL look-alike or a home-brewed dtd, but at least if
it uses the SGML formalism ...

Pei Wei's response [Wei 1993c] was more reserved:

The idea was to do a quick style-hints sort of thing ASAP, rather than something as
comprehensive as FOSI. But I suppose a very subset of FOSI can be that. Personally I
still much prefer the simple semi LISP'ish syntax. But I see your points. ... If we go with
FOSI now, someone should edit down the FOSI DTD. As is its got too much we can't
use now.

If someone had taken on the challenge to define a subset of FOSI and write a
readable specification, FOSI might have been the basis for a style sheet language for
the web. Unfortunately, no one did this.

4.4 Cascading HTML Style Sheets (CHSS)
In October 1994, I published a proposal for Cascading HTML Style Sheets [Lie 1994].
Over the course of several years CHSS developed into CSS, but the initial proposal
(referred to as CHSS) is of historic interest and is discussed in this section. CHSS is
not a complete proposal on its own. Rather, it referred to other proposals for a
description of properties and values (e.g., it referenced RRP) and focused on
describing novel features thought necessary in a style sheet language for the web.
Among these are shared author/user influence, support for visual as well as
non-visual media types, and environment variables.

Cascading Style Sheets

136

http://www.w3.org/People/howcome/p/cascade.html


4.4.1 Syntax

In its simplest form, the syntax of CHSS is a variation of X11 Resources [X11]. Here
is a simple example:

font.family = times

h1.font.family = helvetica

The first line in the example above sets the font family of all elements to times. The
second line is a more specific statement that only applies to H1 elements; H1 elements
should use the helvetica font family instead. Because the second statement is more
specific than the first, it will override the setting for all H1 elements.

The CHSS syntax does not distinguish between properties and elements; without
knowing about properties and elements in advance, a parser will not be able to
distinguish between them. The parser's job is further complicated when optional
media types are added to the syntax:

speech.em.weight = 40db

In the example above, speech is the media type, em is the element, and weight is
the property.

CHSS supports shared influence between authors and users. Each party can
indicate a requested influence as a percentage of the total influence. Here is an
example:

h2.font.size = 20pt 40%

The rule in the above example asks for 40% of the influence over H2 elements' font
size. User style sheets are given priority when influence is assigned, and author style
sheets come second. The proposal foresees that “the user [..] may request total control of
the presentation, but – more likely – hands most of the influence over to the [author]”.

The syntax of CHSS also includes logical expressions involving environment
variables to determine when/if a rule should be applied. Environment variables are
“parameters from the user's environment”, i.e., not from the document itself. The syntax
for these expressions borrows from the C programming language
[Kernighan&Richie 1978]. Here is an example:

AGE > 3d ? background.color = pale_yellow : background.color = white

In English, the expression above can be written: if the document is older than three
days, the background color should be pale yellow, otherwise the background color
should be white.

Chapter 4: Style sheet proposals for the web

137



Thus, the simple syntax borrowed from X11 Resources has been extended in
several ways to accommodate the CHSS concept of shared influence, media types,
and expressions.

4.4.2 Selectors

CHSS offers a simple set of traditional selectors as well as more experimental
selectors. Traditional selectors, which combine stylistic declarations with structural
elements in the document, are based on element names:

h1.font.size = 12pt

By omitting the element name, all elements are selected:

font.size = 12pt

CHSS also offers two aliases to more easily select groups of elements:

head.space.above = 15pt

list.space.first = 1cm

In the example above, head selects all headline elements (H1-H6 in HTML), and
list selects all lists (UL, OL, and DL in HTML). The name space conflict between
the “head” alias and the HEAD element is not discussed in the proposal.

Experimental selectors offered by CHSS fall into two categories. First, the window
selector attaches declarations to an element (i.e., the browser window) which is not
part of the document:

window.margin.left = 2cm

window.margin.right = 2cm

window.margin.above = 2cm

window.margin.below = 2cm

Second, the media types and expressions act as selectors by putting additional
constraints on when a rule should be used. These kind of selectors are meta-selectors in
the sense that they work in conjunction with the traditional selectors, but at a higher
level. Media types are discussed in more detail in the Other formatting contexts section
below. Here are some examples of expressions:

AGE > 3d ? background.color = pale_yellow : background.color = white

DISPLAY_HEIGHT > 30cm ? http://NYT.com/style : http://LeMonde.fr/style

RELEVANCE > 80 ? h1.font.size *= 1.5

The example above is taken from the CHSS proposal and shows that expressions can
be diverse. AGE represents the time since the content was written and is used to give

Cascading Style Sheets

138



older content a pale yellow background. DISPLAY_HEIGHT is a feature of the output
device, which the author has no way of knowing in advance. RELEVANCE is a
number that represents how relevant a document is compared with the user's
personal profile.

4.4.3 Properties

The CHSS proposal states specifically that it is not a “formal definition of the style sheet
language” and that “the specific list of style values” is less interesting than other topics.
RRP is pointed to as a reasonable list of properties.

The examples in CHSS use property names with dots in them. This naming
scheme indicates a grouping of properties where, for example, font is the property
group name and family and size are individual properties. This organization is
similar to the grouping of properties in FOSI and RRP.

Most property names describing space around elements are absolute rather than
relative to the writing direction. Consider this example:

space.left = 0pt

space.right = 0pt

space.above = 4pt

space.below = 4pt

space.first = space.left + 0.5cm

In the example above, the first four properties use absolute names (left, right,
above and below), while the last property (first) is relative to the writing
direction.

4.4.4 Values and units

As noted in the previous section, CHSS does not contain a “list of style values” that
can be compared with other proposals. Still, the examples and the prose describe
several types of values:

• numeric length values with unit identifiers (these units are suggested: pt, px, mm,
cm)

• a numeric loudness value (discussed under “Other formatting contexts” below)

• keywords (e.g. bold, italics, and proportional)

• simple expressions

Chapter 4: Style sheet proposals for the web

139



4.4.4.1 Expressions

The expressions deserve some discussion. First, expressions can involve environment
variables:

window.height = REAL_HEIGHT - 50px

In the example above, REAL_HEIGHT probably refers to the height of the output
device and the statement sets the window size to be 50 pixels less.

Another type of expression involves the previous value of the same
element/property combination:

h1.font.size *= 1.5

To compute the font size of H1 elements, a user agent would first have to compute
the font size as if the rule above did not exist and, subsequently, multiply the old
value by 1.5 in order to find the new value. Also, the end result must be scaled
according to the assigned influence of the rule. The benefit of this approach is that a
rule can express a constraint relative to another, possibly unknown, rule. However,
the algorithm for finding the actual value is complex.

A third kind of expression involves references to other properties. Here is a simple
example:

space.first = space.left + 0.5cm

In the example above, the indentation of the first line is set to be the same as the
element's space on the left side plus 0.5cm. This is another example of describing a
constraint which will be resolved in the future rather than setting a value directly.
The constraint in the above example relies on space.left being computed before
space.first to avoid circular constraints.18

4.4.4.2 Blending values

The concept of shared influence over style is a fundamental feature of CHSS. In
principle, any number of style sheets can demand, and be assigned, influence over
any element/property combination. If more than one rule tries to influence a value,
CHSS will calculate a median value based on a “weighted average”. The proposal
describes some of the issues involved when blending values:

18 The em unit in CSS offers a similar feature and restriction: em units are relative to a value
determined in the future, and the font-size must be computed before other length units.

Cascading Style Sheets

140



For continuous values, e.g. the font size, mixing influences is not problematic – one
simply calculates the weighted average if they differ. For discrete values, e.g. the font
family, it may not be obvious how to mix 40% helvetica and 60% times. Some will
argue that font families certainly can be parameterized and mixed, others that one should
select the request with the highest influence. The issue deserves more research for which this
proposal leaves room.

The research mentioned in the last sentence has not yet materialized. For properties
that accept numerical values, e.g. font-size, calculating weighted average values is
easy. Even if the value is specified in relative terms (“bigger than surrounding text”) or as
a keyword (huge), a numerical value fit for computations can be found. However,
other properties accept other types of values which are more difficult to compute:

• boolean values

• one-dimensional keyword values

• multi-dimensional keyword values

The above listed value types would have been more difficult to compute and even if
algorithms for finding the computed value could have been devised, the results may
have been neither beautiful nor intuitive. The proposal of blending style sheets at the
property level was dropped, therefore, at an early stage in the development of CSS,
while the concept of combining style sheets was kept.

The difference between CHSS, CSS and other proposals on this issue can be
described along a one-dimensional axis of granularity. CHSS is the most fine-grained
proposal, allowing preferences to be computed on a sub-property basis (i.e., several
sources may influence the computation of a single element/property combination).
CSS is not as fine-grained and only allows shared influence on a per-property basis.
Most other proposals are even more monolithic, allowing shared influence on a per
style sheet basis (i.e., one among several style sheets is selected to describe the
presentation of a document).

4.4.5 Value propagation

CHSS offers two mechanisms for value propagation. First, rules can set default values
on properties. Consider this example:

font.weight = normal

By omitting the selector from the rule in the example above, the font weight is set to
normal for all media/elements/property combinations.

Chapter 4: Style sheet proposals for the web

141



Second, CHSS introduces the notion of cascading which can be considered a
value propagation mechanism. This is how cascading is described:

The proposed scheme supplies the browser with an ordered list (cascade) of style sheets. The
user supplies the initial sheet which may request total control of the presentation, but –
more likely – hands most of the influence over to the style sheets referenced in the incoming
document.

In addition to style sheets from users and authors, the browser may also supply a style
sheet. Typically, the browser will supply a base style sheet which includes
conventional descriptions of HTML presentations. One such convention is that H1
elements are shown in larger fonts than text inside P elements.

By relying on the browser having a base style sheet available, users and authors do
not need to repeat all desired stylistic rules. Instead they can just describe the
differences between the accepted conventions and the desired presentation. Thus,
cascading reduces the length of style sheets since accepted conventions do not have
to be repeated.

4.4.6 Visual formatting model

CHSS does not describe a complete visual formatting model. The sample code
indicates that the white space around elements can be described in properties.
However, there is no discussion of what kind of formatting objects the style sheet
language supports nor how elements are classified into different formatting objects.

4.4.7 Linking mechanism

CHSS proposes to use HTML's LINK element to point to external style sheets:

<LINK REL="style" HREF="http://NYT.com/style">

The LINK element is used to indicate the URL of the style sheet. Multiple style
sheets can be referenced from the same document and will be appended to the
cascade and merged as they are encountered.

In the list of unresolved issues, it is noted that only allowing LINK elements in the
HEAD of the document is a limitation. By having a way of “adding and subtracting style
sheets from within the document”, different parts of the document could be styled
differently. This idea is similar to the functionality found in PWP.

Cascading Style Sheets

142



4.4.8 Generated content

Not proposed.

4.4.9 Other formatting contexts

CHSS emphasizes that the proposal can be used with both visual and non-visual
media types. An example in the proposal sets property values for speech media:

speech.*.weight = 35db

speech.em.weight = 40db

Likewise, the proposal contains examples with special rules for print media, for
example:

print.head.align.style = right

Just like head is an alias for the H1-H6 elements in CHSS, the print keyword is also
an alias for two more specific media types: print_mono and print_color. By using
the more specific media types directly, a style sheet can describe presentations of
monochrome and color printers.

4.4.10 CHSS in context

The development of CSS was started on the basis of the CHSS proposal. Many of
the ideas put forward by CHSS have not survived in CSS, for example, environment
variables, selector aliases, and the blending of values. Also, the CSS syntax is quite
different from that proposed in CHSS.

However, three important aspects of CHSS are used in CSS. First, the “C” in
CSS stands for cascading which was first described in CHSS. Although the
cascading mechanism in CHSS is different from the one in CSS, the concept of
shared influence is the same. Second, the ability to use information outside the
document itself in the presentation of the document was introduced in CHSS. CSS
does not have environmental variables, but the pseudo-classes are based on the same
concept. Third, the notion of media types which is found in CSS2 was first proposed
in CHSS.

4.5 Joe English's proposal (JEP)
Joe English' proposal for Style Sheets for HTML [English 1994a] was announced to

the www-html mailing list [English 1994b] in November 1994.19

Chapter 4: Style sheet proposals for the web

143



The proposal is more extensive than any of the other web style sheet proposals,
and it contains rich discussions on difficult topics. This indicates that the author had
worked on the proposal for some time. However, when the draft was published the
author also announced that it would be abandoned in favor of DSSSL Lite (which is
discussed below) and, therefore, the proposal did not receive much discussion on
www-talk.

4.5.1 Syntax

Here is a simple JEP style sheet:

<stylesheet>

<style gis = "body"

fontfam = normal

fontsize = normalsize>

</style>

<style gis = "h1"

fontfam = heading

fontsize = large>

</style>

</stylesheet>

Like FOSI and SHP, JEP is written in SGML. Simple selectors are specified as values
to the gis attribute, and each property is an attribute of its own. In the example
above, the fontfam and fontsize properties are set on the BODY and H1 elements.

The JEP properties and their values are quite readable in this syntax, but the
selector attribute is not intuitive unless one is familiar with SGML terminology.
Element names in SMGL are called Generic Identifiers (GI). Several GIs become gis.
FOSI uses the gi attribute for the same purpose.

4.5.2 Selectors

The gi attribute in the example above is a simple way of selecting elements based on
their names. It accepts a space-separated list of element names as value:

<style gis = "h1 h2 h3"

fontfam = heading>

</style>

19 The www-html mailing list had been created [Berners-Lee 1994] in May 1994 to host
discussions on HTML-related matters. Style sheets were among the topics on the new list.

Cascading Style Sheets

144



In the example above, the fontfam property is set on all H1, H2, and H3 elements.
JEP also describes two mechanisms for selecting elements contextually, i.e., based

on their position in the document structure. The first is to have style sets be applied
by the useset property. Style sets can be thought of as style sheets of their own.
Consider this example:

<styleset id=inheading>

<style gis="em" fgcolor=red></style>

</styleset>

<style gis="h1" useset = inheading></style>

<style gis="em" fgcolor=blue></style>

In the example above, EM elements are red when inside an H1 element, and blue
otherwise. This is due to an indirection: the useset property on the H1 element
declares that the inheading style set is to be used within the H1 element.

The second, and more conventional, mechanism for contextual selectors is to use
a pattern-matching syntax similar to the one in X11 [X11]:

<style context = "h1 * em" fgcolor=red></style>

The syntax of this second method is similar to the approach taken by CHSS and
SSP.

4.5.3 Properties

JEP includes a set of 28 properties. Combined, the properties are able to describe
most of HTML 3.2's rendering conventions with the exception of tables and
counters. Table 10 lists the JEP properties.

JEP's properties correspond roughly to those found in CSS1 [CSS1 1996]. Both
CSS1 and JEP are able to describe basic styling with fonts, colors and spacing. Also,
they can both draw boxes around elements and perform case transformations. None
of them describes tables, counters, generated text or hyphenation. JEP's naming of
properties and values is similar to FOSI (both use pre/right/post/left to describe what
CSS calls top/right/bottom/left) and FOSI is referred to in notes (but not in the list of
references).

For some of the properties, the proposal describes the initial value. Also, JEP
distinguishes between inheritable and non-inheritable properties.

JEP has fewer and simpler font-related properties than most other proposals. The
three font properties are fontfam, fontsize, and fontshape. The fontfam
property only accepts one of four different keywords (normal, heading, fixed,

Chapter 4: Style sheet proposals for the web

145



Table 10: JEP's properties.

Property Values
Corresponding CSS
functionality

Comments

fontfam
normal, heading, fixed,
alternate

font-family
The generic font names can be mapped to
an actual font through the fontdesc

element (see below).

fontsize
tiny, small, normalsize, large,
big, huge, 0, 1, 2, 3, 4, 5, 6, 7

font-size
The keywords are taken from LaTex, the
numbers are taken from Netscape.

fontshape plain, bf, it, bi, sc, tt font-style, font-weight, font-variant
The two-letter values mean bold, italic,
bold italic, small-caps, teletype (i.e.,
monospace).

lmargin length value margin-left

rmargin length value margin-right

preskip length value margin-top

postskip length value margin-bottom

parskip length value -
(This property is left in the DTD by
mistake [English 2002])

parindent length value text-indent Indentation of first line.

presep reference to “separator” padding/border/margin

postsep reference to “separator” padding/border/margin

align left, center right
text-align and/or margin-left,
margin-right

xleading length value line-height Indicates extra leading.

obeylines obeylines, wraplines white-space Indicates if line breaks should be obeyed.

obeyspaces obeyspaces, squeezespaces white-space
Indicates if space characters should be
obeyed.

box box, nobox border-style

boxcolor color border-color

bgcolor color background

fgcolor color color

line
noline, underline, overline,
strikethrough

text-decoration

linecolor color none, the element's color is used

foldcase nofoldcase, toupper, tolower text-transform

headfmt display, runin, margin display/float

icon
an indirect reference to an
image URL

list-style-image Applies to heading.

numfmt
arabic, lcroman, ucroman,
lcalpha, ucalpha

list-style-type

width length value width Describes the width of separators.

thick length value border-width Describes the thickness of separators.

Cascading Style Sheets

146



Property Values
Corresponding CSS
functionality

Comments

align left, center right margin-left/margin-right Describes the alingnment of separators.

alternate) which each express a “logical” font family. Similarly, the fontsize
property (through keywords or, alternatively, integers from 0 to 7) expresses a “logical
size”. Finally, the fontshape property accepts one of six keywords that describe the
weight (normal or bold, slant (normal or slanted), variant (normal or small-caps), and
glyph widths (proportional or monospace). The six keywords are plain, bf (bold),
it (italic), bi (bold italic), sc (small caps) and tt (monospace). By only having six
keywords there are many combinations that cannot be expressed. For example, it is
impossible to select a bold monospace font, or an italic small-caps. The font strategy
is described in the proposal:

This scheme provides a limited logical palette of fonts for designers to choose from, and
readers are able to select the actual typefaces and sizes to which the logical fonts map.

Thus, the proposal envisions that the reader is given the final choice of font to be
used by providing a mapping from the logical font to the actual font. The proposal
also suggests a way of describing this mapping:

<fontdesc fontfam=normal fontsize=normal fontshape=it>

<fontspec notation=XLFD>

-adobe-times-medium-r-normal–*-120-*-*-*-*-iso8859-1

</fontspec>

By combining style sheets from the author side with FONTDESC elements from the
reader, a simple form of cascading could be achieved. However, the proposal
specifically notes that only one style sheet is allowed and that the FONTDESC element
is meant for authors.

Another reason for simplifying the font specification into three properties is that
the proposal does not support “cumulative” font styles [English 1994a]:

Some authors may expect bold and italic specifications to have a cumulative effect, i.e.,
that an italic phrase inside bold text should be rendered in bold italic. [[The utility of this
has always puzzled me, but every Mac program, desktop publishing application, and even
LaTeX2e seem to think that font selection should work like that. I think the notion that
you can do arithmetic with fonts that way is misleading: Times Bold Italic is not just
Times Roman plus bold plus italic.]]

(The original author uses double square brackets to mark comments in the proposal.)

Chapter 4: Style sheet proposals for the web

147



JEP is, as it notes, quite alone in not supporting cumulative font styles. Most other
style sheet languages support cumulative font styles by having independent,
inheritable font properties.

4.5.4 Values and units

Perhaps the most innovative parts of JEP is the lists of values and units. JEP supports
three main kinds of values: length, color and keyword. Of these, the length values
are especially interesting.

4.5.4.1 Length values

Unlike most other proposals, JEP barely mentions the possibility of absolute length
values (pt, mm, cm etc.) but it describes a number of interesting relative length units.
The relative length units fall into two categories: font-relative units and
display-relative units.

The font-relative units are:

• em, en, ex. JEP defines em as the width of a capital letter “M” in the current font
(while most other systems define it as the height of the current font). One
interesting restriction on the em unit is that it “may only be used in horizontal
contexts”.

• lh (line height): the unit is defined as the normal distance from baseline to
baseline (including leading) of the current font.

The display-relative units are:

• pcd (per cent of display): the unit is relative to the display size. The valid range is
between 0 and 100 inclusive.

• nlh (normal line height): the unit is defined as the normal distance from baseline
to baseline of the normal body font at the normal size. While 1lh may mean
different things at different points in a document, 1nlh always refers to the same
height regardless of the current font.

• p: A value of 1p (one p) represents the thickness of a hairline, i.e., the smallest
amount of space easily visible to the eye.

With the exception of the commonly used em, en, and ex units, the relative length
units described in JEP have not been taken up by any of the subsequent style sheet
proposals. I believe this is unfortunate.

Cascading Style Sheets

148



As in FOSI, length values can refer to the margins of the containing block. This
way, values can express more constraints. Consider this example:

<style id=s1 lmargin="+3em" >

By prefixing the value with a '+' or '-' sign, the value is relative to the containing
block rather than absolute (presumably w.r.t. the display area). To indicate a negative
absolute value, JEP suggests using '='.

4.5.4.2 Color values

JEP requires style sheets to define any color names that are used. Here is a sample
color definition and usage:

<colors>

<color id=red rgb="#F00">

<color id=green rgb="#00FF00">

<color id=blue rgb="#000000000FFFFF">

</colors>

<style gis = "code kbd pre" fgcolor=blue>

</style>

Thus, the color names serve as indirections to make style sheets more readable.
Unlike most other style sheet languages, JEP has no predefined colors.

4.5.4.3 Images

Images representing list item markers are handled similarly to color names. Here is a
simple excerpt from the proposal:

<image id = kilroy

url = "http://www.art.com/bitmaps/stupid-kilroy-gif.gif">

<style gis="hr" icon=kilroy  preskip=2p postskip=2p>

</style>

By defining an image name with the image element, a user-friendly name can be
used instead of a URL.

4.5.4.4 Keyword values

Keyword values in JEP are fairly traditional. Here is an example:

Chapter 4: Style sheet proposals for the web

149



<style gis = "h1"

fontfam = heading

fontshape = bf

></style>

The first keyword used, heading, refers to a logical font defined somewhere else
(several options are discussed in the proposal). By not allowing references to real font
names as values, JEP does not need to make a distinction between string and
keyword values, and this simplifies the syntax.

The second keyword, bf, is shorthand for boldface. Many of the keyword values in
JEP consists of two letters.

4.5.5 Value propagation

JEP has two main mechanisms for value propagation: inheritance and cascading.
Both of them are different from inheritance and cascading in CSS; inheritance in JEP
is more complex than in CSS, while cascading (JEP does not use this term) is
simpler.

4.5.5.1 Inheritance

Inheritance is used to transfer values down from parent to child elements in the tree
of elements. For some properties, JEP describes initial values (called default in
JEP), but the proposal seems to expect that most initial values are set on the root
element (or an element close to the root) and use inheritance to propagate the value:

To specify initial or global style properties, designers may use a STYLE element applicable
to the HTML or BODY element. Properties specified there will be inherited by all other
document elements.

In addition to inheriting property values from parent to child, STYLE elements can
inherit values from each other to avoid duplicate declarations. Consider this
example:

Cascading Style Sheets

150



<stylesheet>

<style id=headings

fontfam = heading

fontshape = bf

align = left

></style>

<style gis="h1" inherit=headings

fontsize=huge

align=center>

</style>

<style gis="h2" inherit=headings

fontsize=big>

</style>

The inherit attributes on the last two STYLE elements declare that the declarations
in the first STYLE element also should apply to H1 and H2 elements.

The useset attribute described in the section on “Selectors” above is similar to the
inherit attribute, and can be considered another value propagation mechanism.

4.5.5.2 Cascading

In addition to CHSS, JEP is the only proposal that proposes a mechanism to
negotiate between author and reader preferences. JEP does not use the term
cascading but the proposed mechanism is similar:

Browsers are encouraged to provide users with the ability to configure the default style
sheet. It is also desirable if users may selectively override parts of an external stylesheet
without discarding the entire specification. To accomplish this, style sheets may specify a
weight for each attribute. The weight is an integer from 1 to 3 for external stylesheets, and
from 0 to 4 for user's configurations. A different weight may be specified for each style
attribute.

By allowing the user a wider range of weights, the user has the final word. This is a
simple solution to a much-debated issue. The proposal does not, however, suggest
any syntax for expressing weights.

4.5.6 Visual formatting model

JEP describes a moderately complex formatting model with emphasis on
screen-based presentations. Several advanced topics (e.g., multi-column layout and
table layout) are also discussed without proposing a solution. Table 11 shows how
JEP sorts HTML elements into categories:

Chapter 4: Style sheet proposals for the web

151



Table 11: Categories in JEP.

Category HTML elements

phrases b cite code em i kbd samp strong tt var

blocks address blockquote

paragraphs dd li p

lists dir dl menu ol ul

inline display img input

block display option pre textarea

headings dt h1 h2 h3 h4 h5 h6

metainfo base isindex link meta nextid title

divisions body form head html select

floating elements -

Compared with CSS, JEP has more types of block-level elements: CSS1
distinguishes between block-level and list-item elements while JEP has blocks,
paragraphs, lists, block display, headings and divisions. The names of the categories
indicate that the motivation for sorting elements into the various categories is
semantics. For example, knowing whether an element is a heading or not has
semantic value, but should not – I believe – limit the presentation of the element.
JEP, however, attaches different presentational capabilities to the different categories.
For example, only heading elements can be shown run-in. This is similar to how
different properties apply to different flow object classes in DSSSL.

JEP describes a sequence model for elements rather than a box model. Margin
values can refer to the edge of areas as well as the edge of the containing block. This
is similar to the FOSI formatting model.

JEP can describe advanced separators between elements, including bars and
spacing. Consider this example:

Cascading Style Sheets

152



<sepspec id=chapsep>

<hrule thick = 3p width = 100pcd align = center>

<vspace vskip = 3p>

<hrule thick = 1p width = 100pcd align = center>

<vspace vskip = 4nlh>

</sepspec>

<style

gis = "h1"

fgcolor = blue

presep = chapsep

postskip = 3nlh>

</style>

The SEPSPEC element in the example above describes a separator which includes
two horizontal rules (HRULE) with vertical space (VSPACE) between and underneath
them. The separator is referred to in the presep property of the STYLE element so
that all H1 elements will have a separator before them.

4.5.7 Linking mechanism

JEP proposes to link to external style sheets with the LINK element in the head of the
document, or in an HTTP header found when retrieving the document. HTML and
CSS later used the same approach when linking to style sheets.

JEP also supports a way of directly referring to STYLE elements though the style
attribute in the document. Here is a simple example

In HTML, they are all marked up as <code

style=html-elem>CODE</code> elements, but

it would be useful...

In order for the style attribute to have an effect, the external style sheet would need
to have a STYLE element with a corresponding ID attribute:

<style id=html-elem

fontshape=tt

fgcolor=red>

</style>

4.5.8 Generated content

JEP discusses requirements for generated text, but does not contain a concrete
proposal.

Chapter 4: Style sheet proposals for the web

153



4.5.9 Other formatting contexts

The proposal only describes a visual formatting context, but specifically requests
feedback on how to support non-visual presentations.

4.5.10 JEP in context

JEP is both a traditional and innovative proposal for a web style sheet language. JEP
is traditional in the sense that it uses an SGML-based syntax similar to FOSI. Also,
the author references and borrow features from several existing languages, including
DSSSL and LaTeX. JEP is also innovative. In particular, the length units relative to
the display (pcd, nlh, p) is a valuable contribution.

When JEP was published, the author wrote:

I've been working on a stylesheet proposal on and off for several months now, and it's
finally at the point where it's ready to publish. However, I'm probably going to abandon it
now. There are other works in progress – particularly the DSSSL Lite proposal – which
look much better.

I must disagree with the author about the quality of his work: I personally find that
JEP is a more suitable proposal than DSSSL Lite.

4.6 Sketch of Simple Formatting Primitives (SSFP)
The title of this proposal suggests it is merely an outline of simple stylistic properties.
Indeed, the proposal sketches, rather than fully defines, a simple set of formatting
primitives, but it is not limited to primitives (which is SSFP's term for properties).
SSFP outlines a complete style sheets language including syntax, selectors,
properties, values and units. The author also has strong opinions on how style sheets
should be linked to documents, and goes beyond most other style sheet proposals by
describing link behavior. Therefore, despite the unassuming title, the proposal
qualifies for discussion in this chapter.

SSFP is dated September 1994 and was first published to the www-talk mailing
list in November 1994 [Sperberg-McQueen 1994a]. The message that announced
the proposal [Sperberg-McQueen_1994b] contains additional information that is
relevant to the interpretation of the proposal. For the purpose of evaluating SSFP,
the announcement message is considered, therefore, to be part of the proposal.

Cascading Style Sheets

154



4.6.1 Syntax

SSFP states that “notation is not specified here, but various options are obviously suitable”.
The proposal uses a LISP-inspired syntax in all examples. Here is a simple excerpt:

(style a

(block #f)     ; format as inline phrase

(color blue)   ; in blue if you've got it

(click (follow (attval 'href)))  ; and on click, follow url

The first line selects A elements, while the rest of the style sheet assigns values to
properties. The selected elements are set to be inline, and are given a blue color. The
last line describes hypertext behavior: if the element is clicked, the value of the href
attribute should be followed. By describing hypertext behavior, SSFP – along with
SSP – goes beyond the normal scope of style sheet languages.

4.6.2 Selectors

SSFP only supports one simple type of selector. The examples in the proposal select
elements based on their name only. Here is an example:

(style h1

(block #t)

(vspace '24pt '8pt)

(shape 'centered)

(font-size 'vlg)

(font-style 'bold)

(flow #f))

The author of the proposal is well aware of the need for more advanced selectors and
the issue is discussed in the announcement message [Sperberg-McQueen 1994b]:

Critical to making the logic useful is a reasonable set of primitive functions for querying
one's location in the SGML document.

The reason why more advanced selectors are not included may be that the proposal
was specifically targeted for the relatively simple HTML language. This is supported
in the accompanying message which states that the proposal only describes “the
behavior of HTML browsers as described in the HTML specification”.

Chapter 4: Style sheet proposals for the web

155



4.6.3 Properties

SSFP describes 13 properties and this is the simplest set of properties among the
proposals discussed in this chapter. Table 12 lists the properties along with CSS
equivalents.

Three of the properties in the table above offer functionality not found in any of
the other proposals discussed in this chapter and deserve special mention:

• The shape property is listed but not described in the specification. Judging from
the list of keyword values, this property determines the horizontal margins of the
elements, the text alignment within the element, and even quote marks in the
element's margin.

• The display-level property is not described in detail in the proposal but,
judging from the name, it seems similar to the Visibility property of P94
[Quint 1994]. Thus, it is a way of creating outline views of the document by, for
example, giving headings higher values than paragraphs. By raising/lowering the
display threshold, elements become invisible/visible.

• The click property describes link behavior. The proposal lists two ways of
describing HTML's linking behavior for the A element:

(style a (click (follow (attval 'href))))

(style a (click 'follow-URL 'HREF))

The click property is described in a section called Actions which also mentions
the possibility of having a double-click property.

The names of SSFP's properties do not disclose whether they are relative to the
writing direction or not. Consider this example:

(style address

(margins '+10pica '0))

The margins property takes two values but it is unclear if the values are absolute
(left/right) or relative to the writing direction. The values of the shape property use
absolute names (e.g., indent-left, indent-twice-left), while the two values of
the vspace property is described as “vertical space before and after element”. SSFP
therefore seems to use a mixed model with no clear preference for either absolute or
relative names.

4.6.4 Values and units

The values and units in SSFP are similar to those used in DSSSL:

Cascading Style Sheets

156



Table 12: SSFP's properties along with CSS equivalents.

Property Values Corresponding CSS functionality

block true/false display

flow true/false white-space

vspace two length values margin-top, margin-bottom

margins two length values margin-left, margin-right

shape
normal-para, centered, flush-left, block-para, netnews-quote,
indent-left, indent-twice-left

-

display-level integer where '0' means hide and positive integers mean display -

font-family list of font names font-family

font-size
integer (representing the point size) or a keyword: normal, lg, vlg,
sm, vsm, huge

font-size

font-style roman, ital, bold font-style, font-weight

treatment normal, underlined, relined text-decoration, color

color color name (the list of names is not defined) color

content
concatenation of one or more of: content(), attval(NAME), string
literal

content

click see below -

• keywords are prefixed by an apostrophe

• true/false values are represented by #t and #f, respectively

There are, however, some differences in values between DSSSL and SSFP:

• SSFP length values are prefixed by an apostrophe; in DSSSL they are not

• SSFP color names are not pre-fixed by an apostrophe, in DSSSL they are

The list of length units is not defined anywhere in the specification but examples use
the following units: pt, pica, and l. The last unit may refer to the line height but
this is not described in the proposal.

4.6.5 Value propagation

SSFP has two mechanisms for value propagation: initial values (called default values),
and inheritance.

Although the specification only lists the initial value for four of the properties, it is
reasonable to assume that a more developed proposal would list initial values for all
properties.

Chapter 4: Style sheet proposals for the web

157



Inheritance does not happen automatically in SSFP. However, all properties
accept the CURRENT value which specifies that the property should be inherited.
INHERIT is offered as a synonym for CURRENT.

4.6.6 Visual formatting model

Given that the proposal only describes 13 properties, the visual formatting model of
SSFP is quite simple. Formatting objects are either block-level or inline. Block-level
objects have:

• a shape, as described in the section on Properties

• vertical space before and after the element

• margins on the each side of the element

Like FOSI and JEP, length values in SSFP can be prefixed by '+' or '-' signs. This
indicates that SSFP supports a FOSI-like area model where prefixed values refer to
the edges of the containing block and other values refer to the edges of the area. The
text, however, does not discuss this matter.

4.6.7 Linking mechanism

The proposal argues strongly that style sheets should not be referenced from the
document itself, but rather by using an HTTP header:

I'd put the final point even more strongly: they should not be referenced from the HTML
*document* at all; the link should be external to the document, established in the HTTP
header, not within the HTML document.

4.6.8 Generated content

Despite its simplicity, SSFP supports generated content through the content
property. The content property can take one of three values. The content() value
refers to the content of the element itself and is the initial value. The attval(NAME)
value names an attribute whose value will be used instead of the element's content.
The string literal value allows the style sheet to set the content of the element.
CSS2 has a property with the same name and similar values.

SSFP also includes a discussion on how counters could be supported.

Cascading Style Sheets

158



4.6.9 Other formatting contexts

Not proposed.

4.6.10 SSFP in context

SSFP is a simple proposal which borrows both from FOSI and DSSSL. The proposal
shows concern for “low-level” web browsers and “higher level” implementations,
presumably SGML-based products. It can be seen as an attempt to build a bridge
between the web and SGML.

The main shortcoming of the proposal is that it is immature and incomplete.
The main strength of the proposal is that it describes advanced functionality –

notably counters, link behavior and generated text – in a simple proposal.
Another noteworthy achievement of SSFP is that the proposal is still available

from the URL that was published in 1994
(http://tigger.cc.uic.edu/~cmsmcq/style-primitives.html).

4.7 DSSSL Lite
In November 1994 the SGML '94 conference was held in Tysons Corner, Virginia,
USA. At the conference, a group of people met to discuss the “the feasibility of defining
a subset of the Document Style Semantics and Specification Language (DSSSL)”. As
discussed in the previous chapter, DSSSL is a complex specification and there was
little hope of having web browsers support all of DSSSL. By defining a subset,
dubbed DSSSL Lite, the goal was to create a style sheet language that would be
“simple yet powerful enough to provide a basis for style sheet interchange on the Web”
[Magliery 1994].

In December 1994 the DSSSL Lite Announcement was sent to various web mailing
lists and newsgroups [Magliery 1994]. It encouraged people to join efforts to create a
subset of the DSSSL specification targeted for use on the web, and was sent out by
Tom Magliery who was a programmer in NCSA's Mosaic team.

James Clark wrote the first draft. The version reviewed in this chapter is dated
November 24, 1994 [Clark 1994]. It is written for readers familiar with DSSSL and
does not attempt to promote or teach DSSSL Lite to a wider audience.

The stated intention of the work was for DSSSL Lite to be a subset of DSSSL
[Magliery 1994]. However, there are several discrepancies between DSSSL Lite and
the DSSSL standard. For example, several of the properties listed in the DSSSL Lite

Chapter 4: Style sheet proposals for the web

159

http://tigger.cc.uic.edu/~cmsmcq/style-primitives.html


proposal do not exist in DSSSL. This is probably because the DSSSL standard was
not yet finalized in 1994.

The DSSSL Lite proposal does not contain any extended examples of how to use
the language. Only small code fragments are shown, and this makes it difficult to
review the proposal. I have tried to write the examples below according to the
proposal.

4.7.1 Syntax

DSSSL Lite is based on DSSSL and uses the DSSSL syntax. Here is a simple
example:

(element H1

(paragraph font-size: 20pt))

In the example above, H1 elements are selected and turned into paragraphs with font
size 20pt. A paragraph is one of 14 different flow objects in DSSSL Lite. Unlike
DSSSL, DSSSL Lite does not require the make keyword before the name of a flow
object.

4.7.2 Selectors

DSSSL Lite offers four kinds of selectors:

• type selectors select elements based on their type. The example in the previous
section uses a type selector.

• contextual selectors select elements based on their type and ancestors. Here is
an example which selects LI elements which are children of UL:

(element (UL LI)

(labeled-item)

Contextual selectors in DSSSL Lite are similar to those in CSS.

• id selectors select elements based on their unique identifier (in HTML, this is
the value of the ID attribute).

• the root selector selects the root element.

It is not possible to select elements based on their attributes. However, elements can
be treated differently based on their attributes or ancestry by using the expression and
query language:

Cascading Style Sheets

160



(element NOTE

(if (attribute "WARNING")

font-weight: 'bold))

The if statement is one of the expressions supported by DSSSL Lite. Other logical
expressions, like and and or are also supported.

The attribute function queries the attributes of the element. DSSSL Lite
describes three functions for querying attributes:

• attribute: returns an attribute of the current element, or false if the current
element has no such attribute;

• inherited-attribute: returns an attribute of the current element or of the
nearest ancestor for which the attribute is present; and

• ancestor-attribute: returns the attribute of nearest ancestor of a given type.

To handle counters, these query functions are defined:

• child-number: returns the child number of the current element, that is, the
number of preceding siblings of the same type returns the child number of
nearest ancestor of a given type.

• ancestor-child-number: returns the child number of nearest ancestor.

• hierarchical-number: returns a list of child numbers for a given list of
element types. For each element type, the returned list describes the youngest
ancestor of the current element.

• hierarchical-number-recursive: returns a list of child numbers for a given
element type. The length of the returned list reflects the number of elements of
that type among the ancestors.

• element-number: returns the number of elements with the same type as the
current element appearing before the current element.

• element-number-list: returns the element number for a given list of element
types.

• first: returns true if if the current element has no preceding sibling of the
same type.

4.7.3 Properties

The DSSSL Lite proposal lists 27 properties (called characteristics in DSSSL). Table 13
lists the properties in the order they appear in the proposal:

Chapter 4: Style sheet proposals for the web

161



Table 13: The properties of DSSSL Lite.

Property name
CSS properties with similar
functionality

Comment

break-before display

first-line-start-indent text-indent

break-after display

space-before margin-top
These properties apply to block-level flow objects

space-after margin-bottom

escapement-space-before margin-left These properties apply to character-level flow
objectsescapement-space-after margin-right

label list-style-type Not present in DSSSL.

font-family-name font-family

font-weight font-weight

font-posture font-style

font-proportionate-width font-width

font-size font-size

score text-decoration?
Not explained, DSSSL has several properties that
describe scoring.

placement-offset - Called “alignment-point-offset” in DSSSL.

color color

start-indent margin-left

first-line-start-indent text-indent

end-indent - Called “last-line-end-indent” in DSSSL.

quadding text-align

display-alignment text-align, margin-left, margin-right

verbatim? ? Not explained, not present in DSSSL.

pre-line-spacing line-height Called “min-pre-line-spacing” in DSSSL.

post-line-spacing line-height Called “min-post-line-spacing” in DSSSL.

background-color background Applies only to root element.

keep-with-previous page-break-before

keep-with-next page-break-after

4.7.4 Values and units

The proposal does not list values and units.

Cascading Style Sheets

162



4.7.5 Value propagation

The proposal labels properties as inherited or not. The initial values of properties are
not discussed.

4.7.6 Visual formatting model

DSSSL Lite describes a simple visual formatting model suitable for printed and
screen presentations. The model is much simpler than DSSSL:

• DSSSL Lite lists 14 flow objects compared with 35 in DSSSL (excluding
DSSSL's flow objects for mathematical formulae); and

• DSSSL Lite list 27 properties compared with more than 200 in DSSSL
(excluding DSSSL's flow objects for mathematical formulae).

The main limitations of DSSSL Lite compared with DSSSL are:

• single column only;

• no footnotes; and

• headers and footers can only have one line.

The proposed flow objects for DSSSL Lite, in order of appearance, are: root,
paragraph, labeled-item, character, rule, leader, external graphic,
table, table-part, table-row, inline-table-cell, display-table-cell
and iconify.

In addition, a simple variant of the page-sequence flow object is discussed, but
not named. Most likely, the work on DSSSL Lite resulted in the
simple-page-sequence being added to DSSSL.

4.7.7 Linking mechanism

Like DSSSL itself, DSSSL Lite does not specify how style sheets are linked to
documents.

4.7.8 Generated content

4.7.9 Other formatting contexts

Not proposed.

Chapter 4: Style sheet proposals for the web

163



4.7.10 DSSSL Lite in context

The work on DSSSL Lite gained considerable support from key people in the web
community. In January 1995, Dave Raggett added the STYLES element, the STYLE
element, and the CLASS attribute to the HTML 3.0 draft being developed at the
time. In the draft he wrote:

A style sheet can be associated with the document using the LINK element, e.g. <LINK
rel=stylesheet href="housestyle.dsssl">. Style overrides can be placed in the document head
using the STYLES element, e.g.

<styles notation=dsssl-lite>

<style class=bigcaps>(dsssl-lite-stuff)

<style class=para17>(more dsssl-lite-stuff)

</styles>

In May 1995, Dan Connolly of W3C wrote a personal email to Tim Berners-Lee,
David Raggett, and myself:

DSSSL-Lite, from my research, appears to be exactly "as simple as possible, and no
simpler." It is not at all clear what the advantage of the other proposals is.

The “other proposals” are further described:

From what I've seen of Bert Bos and Hakon Lie's proposals, they're re-inventing
DSSSL using X resource syntax rather than lisp s-expressions.

His conclusion is:

So I suggest that further development on stylesheets be based on DSSSL-Lite. Spending
resources for a mechanism that isn't compatible isn't justified.

DSSSL Lite also had strong support in the SGML community. Joe English, the
person behind the JEP proposal, which he dropped in favor of DSSSL-Lite, writes in
a retrospective personal email [English 2002]:

As to why I thought DSSSL-Lite would be the "winner" – the SGML community had
been eagerly anticipating the DSSSL spec for years (literally!) with high expectations. As
it turned out, DSSSL didn't take the world by storm, but at the time we all thought it
would...

Commercial vendors were also involved in the development of DSSSL Lite. At least
one company announced plans to support it [EBT 1997]:

Cascading Style Sheets

164



GMUNDEN, AUSTRIA (SGML EUROPE '95) May 16, 1995 – In yet
another example of its standards-based philosophy, Electronic Book Technologies, Inc.
(EBT, Booth # 25) today announced plans to incorporate support for the Document Style
Semantics and Specification Language (DSSSL) in the next major release of
DynaText(tm), EBT's industry leading standards-based online publishing system. EBT
also plans to support "DSSSL Lite," currently being proposed as the stylesheet language
for the World-Wide Web (Web) ...

In October 1995, the name of the effort to create a subset of DSSSL was changed
from DSSSL Lite to DSSSL Online Application Profile, informally referred to as
DSSSL-O. One of the reasons for dropping the DSSSL Lite name was that “'Lite' is
the well-known name of a particularly insipid brand of beer” [Bosak 1995].

DSSSL-O was completed in 1996 around the same time that DSSSL became an
ISO standard. James Clark was an architect and editor of both specifications and it
seems clear that the work on DSSSL Lite and DSSSL-O influenced the final design
of DSSSL.

DSSSL-O ended up being much more complex than the DSSSL Lite proposal
reviewed in this chapter. Table 14 compares the number of flow object classes and
properties in the three DSSSL specifications.

The complexity of DSSSL-O may have been a reason why it was never
implemented in any browser and has never seen any real use on the web. The
DSSSL community has since developed XSL [XSL 2001].

4.8 Stream-based style sheet proposal (SSP)
In March 1995, Bert Bos published a proposal called Stream-based Style sheet Proposal
(SSP) [Bos 1995]. The author emphasizes the need for a style sheet language that can
present documents progressively as they are downloaded from the web into the
browser, thus the name stream-based. The proposal starts by discussing how previous
proposals perform against this requirement. Several of them, including RRP, PWP
and CHSS, are able to render progressively. The only proposals dismissed for not
being stream-based are DSSSL and DSSSL Lite.

Another feature emphasized in SSP is the ability to apply style sheets to SGML
documents in addition to HTML documents.

4.8.1 Syntax

Here is a sample SSP style sheet fragment:

Chapter 4: Style sheet proposals for the web

165



Table 14: The number of flow object classes and properties in DSSSL Lite, DSSSL-O and
DSSSL.

DSSSL Lite DSSSL-O DSSSL

flow object classes 14 25
35
(not counting math flow objects)

properties 27
157
(not counting properties for which all values
can be ignored)

213
(not counting properties only used in
math flow objects)

HTML.justify: full

*H1.justify: center

*OL.LI.label: A

Each line in the example above is a stylistic rule with a selector, property and value.
The syntax is borrowed from X11 resource files [X11]. SSP argues that the X11
resource file syntax is straightforward, human read- and writable, and supports the
addressing of tree-based structures. Also, software for parsing the syntax is already
available.

SSP distinguishes between element names and properties by case: element names
are written in uppercase and properties (and media types) are written in lowercase.

4.8.2 Selectors

In the example above, the name of the element (e.g. H1) is preceded by an asterisk
character (*) to match all elements in the tree. Without the asterisk, only the root
element (HTML in the example above) is matched. This syntax emphasizes the
structured nature of the target content and reminds authors that style sheets apply to
structured documents. The approach is similar to the one taken by Pei Wei, arguably
with a more readable syntax.

Selectors can also express parental and ancestral relationships:

*OL*OL.LI.label: A

In the example above, LI elements with an OL parent and another OL as ancestor are
selected.

SSP also proposes to extend selectors to express media types:

Cascading Style Sheets

166



b&w*A.textcolor: white

b&w*A.textbackground: black

monochrome*A.textcolor: black

monochrome*A.textbackground: gray80

In the example above, the first two rules apply to black-and-white devices, while the
last two rules apply to monochrome devices. This method for supporting different
media types is similar to CHSS.

Selectors in SSP can also involve the value of ID attributes:

*id: !ID

@p101.size: 1

In the example above, the first line establishes that for all elements, the id property
finds its value from the ID attribute (the exclamation mark denotes an attribute
reference). When it has been established that the ID attribute contains the value of
the id property, selectors matching ID values can written with a preceding '@'
character. The second line of the example above matches any element with this
attribute: ID="p101"

Thus, the simple X11 resource file syntax has been extended to express ID
selectors. By introducing yet more symbols, the selector syntax could have been
extended even further. SSP, however, chooses to add logical expressions in the
declarations rather than in selectors. See the section on Values below. This approach
is similar to P94 and DSSSL.

4.8.3 Properties

The properties proposed by SSP are listed in Table 15. The grouping of properties is
done by this author.

Table 15: Properties proposed by SSP.

Property Value
Corresponding
CSS functionality

Comment

Font and text properties

size integer, optionally with '+' or '-' prefix font-size

The value is an index into a table
of font sizes. If a +/- prefix is
present, the value is relative to the
parent element's value, otherwise
the value is the index itself.

family
one of four generic font families: normal, alt,
tt, sym

font-family

Chapter 4: Style sheet proposals for the web

167



Property Value
Corresponding
CSS functionality

Comment

familyname specific font family, e.g. “Univers” font-family

This propoerty takes precedence
over family, but only if the
browser is able to provide the
font.

emphasis a number selecting the level of emphasis - See discussion below.

slant true/false font-style

bold true/false font-weight

underscore the number of lines under the text text-decoration

strikeout true/false text-decoration

textcolor X11 color name color

textbackground X11 color name, or 'transparent' background

leading number line-height

The number indicates extra vertical
space between lines relative to the
default line height. Thus, 1.0 means
double-spaced lines.

obeyspaces true/false white-space

nowrap true/false white-space

justify left, right, full, center text-align

hyphenate true/false -

Border properties

rulebefore number
padding-top,
border-top

This property causes a horizontal
rule to be inserted above the
element, followed by the given
amount of whitespace.

ruleafter number
padding-below,
border-below

This property causes a horizontal
rule to be inserted below the
element, followed by the given
amount of whitespace.

rulethickness number -

This property describes the
thickness of rules generated by
rulebefore and ruleafter

properties.

frame

any sequence of zero or more words from
`left', `right', `top', `bottom', `border'.
`border' is equivalent to `left right top
bottom'

border properties

White space properties

prebreak number margin-top See discussion below

postbreak number margin-bottom See discussion below

vmargin number
padding-top,
padding-bottom

Extra space to add above and
below an inline object.

hmargin number
padding-left,
padding-right

Extra space to add left and right of
an inline object.

leftindent number margin-left

Cascading Style Sheets

168



Property Value
Corresponding
CSS functionality

Comment

rightindent number margin-right

parindent number text-indent

noindent true/false - See discussion below.

Vertical alignment properties

valign top, bottom, middle vertical-align
Vertical alignment of an inline
object.

depth integer vertical-align
Depth below the baseline of an
inline object, in pixels. This
property overrides valign.

raise integer vertical-align

Positive values raise the text,

negative values lower it. “The exact

positions in pixels are a property of

the font.”

Box size properties

textwidth number width

width integer width Width of an inline object in pixels.

height integer height Height of an inline object in pixels.

Properties for generated text

insertbefore string :before pseudo-element

insertafter string :after pseudo-element

Properties for floating

track left, right, normal float
See discussion in the “Visual

formatting model” section.

flush left, right, full clear

Table properties

table true/false display: table

tablerow true/false display: table-row

tablecell true/false display: table-cell

rowspan integer -

colspan integer -

caption top, bottom, left, right caption-side

Classification properties

empty boolean - See discussion below.

title true/false - See discussion below.

ismap true/false -
Indicates whether an element is an
ismap or not.

stylesheet merge, replace, override - See discussion below

language ISO code for a language :lang selector See discussion below

Link behavior properties

inline
URL of something to display in-line at the
start of the element

-

Chapter 4: Style sheet proposals for the web

169



Property Value
Corresponding
CSS functionality

Comment

id an element ID -
This value will nearly always be an
attribute reference, such as !ID.
See discussion below.

target element ID - See discussion below.

anchor URL - See discussion below.

anchorshape - See discussion below.

anchorcoords - See discussion below.

Other properties

label

A, a, 1, I, i, bullet, square, -, *, names of
symbols (resp. auto-numbering uppercase
letters, lowercase letters, Arabic numbers,
Roman numerals, lowercase Roman
numerals, bullets, squares, dashes, asterisks,
WWW-icons).

list-style-type

hide true/false visibility

minimized true/false - See discussion below.

Some of the properties listed above deserve farther discussion:

• emphasis: this property takes an integer value from zero and upwards to express
levels of emphasis. The property does not say anything about how the level of
emphasis is to be formatted, leaving this issue to the browser. Thus, this property
says more about semantics than presentation. This is unusual in a style sheet
language. When in conflict with other, more presentation-oriented properties,
this property will be overridden.

• prebreak/postbreak: these properties indicate the minimum amount of white
space above/below the element. The concept of minimum space (rather than
exact space) is also used in CSS.

• minimized: if true, this property indicates that the element is replaced by a
marker. When clicked, the marker will show the content of the element. This
feature is an example of interactive behavior which has not been taken up by
other style sheet languages.

• noindent: This property suppresses first-line text indentation on the next
paragraph. Typically, first-line text indentation is suppressed on paragraphs
following a headline and, since it is easier to select headline elements than to select
elements following a headline, this property simplifies the style specification.

Cascading Style Sheets

170



• empty/id: the empty property indicates whether an element is empty or not,
and the id property names the attribute that contains the ID of elements. In
SGML, this information is stored in the DTD. SGML browsers have few other
reasons for consulting the DTD than to find what elements are empty and what
attribute is the ID attribute. By storing this information in a style sheet, SSP
challenges the need for DTDs.

• title/stylesheet: these properties identify which elements contain titles and
style sheets, respectively. By using these properties it is possible to turn any
SGML element into HTML's TITLE or STYLE element. The values of the
stylesheet property allow style sheets to be merged in various ways. This
feature is further described in the Value propagation section below.

• target/anchor/anchorshape/anchorcoords: these properties identify
anchors and targets in the source documents, thereby making hyperlinking
possible. They go beyond traditional style sheets by describing the behavior of
documents in addition to the presentation thereof.

4.8.4 Values and units

SSP offers a range of values from the very simple to the complex. In practice – where
practice is defined by the sample style sheets in the proposal – the simple values cover
most needs, while the advanced values solve specific problems.

There are four different kinds of simple values (called explicit values) in SSP:
integer, decimal number, keyword and string. Each property only accepts one kind
of simple value. Consider this example:

*H2.size: 1

*HR.rulethickness: 0.1

*H2.justify: left

*H2.familyname: Gill Sans

The first rule in the example above assigns an integer value to the size property on
H2 elements. The size property only accepts integer values (which serve as indexes
into a browser-defined table) and, therefore, there is no need for unit identifiers. The
second rule assigns a real number (not an integer) to the rulethickness property.
The value is relative to the line height. In the third rule, the justify property is
assigned the value left. The value in the fourth rule is the name of a font family and
since the list of font names is open-ended, the value is a string rather than a keyword.

Chapter 4: Style sheet proposals for the web

171



However, since the property only accepts one simple kind of value, there is no need
to differentiate strings from keywords syntactically.

In addition to the simple values, SSP has three advanced values: attribute
references, property references, and the ifmatch function.

4.8.4.1 Attribute references

Here is an example of how attribute references can be used:

*IMG.width: !WIDTH

In this example, the width property is assigned the value of the WIDTH attribute of
the IMG element. In HTML, the IMG element has a WIDTH attribute which takes an
integer as a value. Since the width property in SSP also accepts an integer value
representing pixels, the simple rule transfers presentational information from the
markup to the style sheet language. A similar rule can be written for the height.

The simplistic beauty of the above example, however, also imposes a serious
restriction: only one type of value can be transferred (in this case pixels). The system
is not able to handle percentage values which are also legal according to HTML.

4.8.4.2 Property references

Property references are described briefly in the proposal, but only an incomplete
example is given. The following example is constructed by this author:

PRE.width: $width

The value in the example above is the name of a property (width) preceded by a $
sign, which indicates that the value should be fetched from the parent element. The
effect in the example is to make the width property inherit for PRE elements.

4.8.4.3 Built-in functions

The most advanced value in SSP is the ifmatch built-in function. Consider this
example (which is the only example using ifmatch in the proposal):

*IMG.ismap: @ifmatch(!ISMAP, "ISMAP", true, false)

One purpose of the ifmatch function is to address the limitation of attribute
references described above. The attribute reference (!ISMAP) only returns the value
of an attribute. If the attribute value does not match exactly the values accepted by an
element, they can be transformed by the ifmatch property. In the example above,
the ismap property accepts true and false and this is what the ifmatch function

Cascading Style Sheets

172



returns. The function returns true if the value of the ISMAP attribute is equal to the
regular expression given as the second argument to the function. Otherwise false is
returned.

The ifmatch function is a complex value, both for authors and for
implementations. No other style sheet language uses regular expressions as values,
and SSP's author later changed his mind on this topic [Bos 1998].

4.8.5 Value propagation

SSP relies on two familiar mechanisms for value propagation: inheritance and initial
values. Also, there is a mechanism for combining several style sheets.

For each property, the proposal specifies whether or not it is inherited.
Non-inherited properties can be made to inherit by using property references, as
described above.

SSP's stylesheet property declares that the element contains a style sheet. The
style sheet contained in the element can either merge with other style sheets, replace
other style sheets, or override other style sheets. This mechanism has some
resemblance with cascading in the sense that it is able to combine stylistic rules from
several different style sheets. However, merging is defined to mean that the two style
sheets are simply concatenated, giving the first style sheet priority in case of conflict.
Also, the mechanism has no notion of the origin of the style sheet
(user/author/browser).

4.8.6 Visual formatting model

Compared with the other proposals discussed in this chapter, SSP describes an
advanced formatting model. In addition to basic inline and block-level elements,
floating elements, tables and captions are discussed.

SSP employs a box model where child elements are inside their parent.
Surprisingly, there is no property that explicitly distinguishes between the two

basic types of element: block-level and inline. Instead, some properties imply that an
element is block-level. That is, if any of these properties (e.g., prebreak,
ruleafter, leftindent) has a non-default value the element becomes block-level,
otherwise it is inline.

Floating elements are supported through the track and flush properties. SSP
defines three tracks – left, center and right – into which an element can be put.
When elements are put in the left or right tracks, the elements in the center track

Chapter 4: Style sheet proposals for the web

173



will flow around them. The flush property indicates whether an element can reside
next to floated content or not. Here is an example of its use:

*IMG.track: right

*H1.flush: full

Here, IMG elements are floated to the right while H1 elements will always be placed
underneath a floating element. CSS has adopted the SSP model for floating
elements, but uses different property names.

Tables are achieved in SSP by classifying elements into rows, cells and the main
table container:

*TR.tablerow: true

*TD.tablecell: true

*TABLE.table: true

The example above maps HTML's table elements to SSP table formatting.

4.8.7 Linking mechanism

SSP provides a way to embed style sheets into documents. Consider this example:

<DOCUMENT>

<STYLE>

*STYLE.stylesheet: true

</STYLE>

</DOCUMENT>

Here, the rule inside the STYLE element declares that the STYLE element contains a
style sheet. For the parser, however, the information in the stylesheet property
comes too late – in order to understand the style rule, the parser must know that the
element contains a style sheet.

The proposal considers links to external style sheets to be outside its scope but,
nonetheless, describes various ways of linking. The options discussed are:

Cascading Style Sheets

174



• In the LINK tag of HTML. This is unsatisfactory for several reasons: (1) it is too
late, the document has already started before the link is found; (2) it doesn't work for
non-HTML.

• In a new header line of the HTTP protocol. This is better, but it relies on HTTP
being used.

• As part of a MIME/multipart document.

• In the URL. A bad idea, not only because the style doesn't really `belong' to the
document, but also because the URL would become too long.

• The other way round: a hyperlink contains not the URL of the document, but of its
style sheet, which in turn references the document (in a new `document' property).

• As an attribute of A: <A HREF="doc.html" STYLE="doc.sty">

4.8.8 Generated content

SSP supports a simple way of adding text to the beginning and end of elements.
Consider this example:

*Q.insertbefore: `

*Q.insertafter: '

Two properties, insertbefore and insertafter, contain the text that should be
added. There is no way to style the generated text differently from the content of the
element.

4.8.9 Other formatting contexts

The proposal briefly discusses the possibility of supporting other output devices, but
no mechanism is proposed.

4.8.10 SSP in context

Although SSP is a fairly short and simple proposal, it goes further than most other
web style sheet proposals in two areas. First, it describes a relatively sophisticated
formatting model including tables, floating elements and minimum (as opposed to
exact) vertical margins.

Second, SSP style sheets contain more non-stylistic information than other
languages. For example, information about the content language, link behavior,
which attribute contains the ID value, and whether or not an element is empty can
be represented. To some extent, SSP challenges SGML's DTD by providing an
alternative – and much simpler – syntax for the same information.

Chapter 4: Style sheet proposals for the web

175



SSP is notably sparse in the number of units it suggests. Units are tied to
properties and values, therefore, do not need unit identifiers. The length units are
limited to ems, lines and pixels.

The author of SSP, Bert Bos, later joined W3C to work with this author on style
sheets. Thus SSP had an strong influence on the development CSS.

Like SSFP, the SSP specification is still available from its original URL.

4.9 PSL96
PSL is a presentation specification language developed by Ethan Munson and his team at
the University of Wisconsin-Milwaukee [Munson 1996] [Marden&Munson 1998].
The PSL language is inspired by – and builds upon – the P language discussed in the
previous chapter. Unlike the other proposals described in this chapter, PSL was not
put forward as a proposal to be discussed on the www-talk mailing lists. Instead PSL
was, like P, described in research papers, and implementations were made available
in the form of a source code library called Proteus.

The PSL language evolved over time. The initial description of Proteus in a paper
from 1992 [Graham, et al. 1992] described a presentation schema language but did not
use the acronym PSL. The syntax of PSL in 1992 is very close to that of P, and the
same syntax is used in Munson's PhD thesis of 1994 [Munson 1994]. However, a
paper of 1996 [Munson 1996] describes an evolved syntax and PSL is proposed as a
style sheet language for the web. To distinguish this language from earlier languages,
the language reviewed will be referred to as PSL96. Another paper from 1998
[Marden&Munson 1998] further describes PSL96 and gives code examples. Also,
the title of the 1998 paper (PSL: An Alternate Approach to Style Sheet Languages for the
World Wide Web) promotes PSL96 as a style sheet language for the web.

Both papers are written in a scientific style. This gives readers a quick grasp of the
language but does not serve to make them complete proposals. For example, none of
the papers gives a list of proposed properties.

4.9.1 Syntax

PSL96, in its simplest form, looks similar to CSS. Here is a simple fragment:

H1 {

fontSize: 20;

}

Cascading Style Sheets

176



This would have been a valid CSS style sheet if the property was font-size, and
the value had a unit identifier (e.g. px).

PSL96 uses curly brackets to indicate blocks where P94 uses begin and end

keywords. As such, PSL96 resembles the C programming language while P94 draws
upon Pascal. The newer PSL96 syntax is arguably easier to read and is also similar to
CSS.

The above example is not a complete style sheet on its own. A PSL96 style sheet
consists of four sections: HEADER, DEFAULT, ELABORATIONS, and RULES. Here is a
simple style sheet with a DEFAULT and RULES section:

DEFAULT {

lineHeight = Self.fontSize * 1.5;

}

RULES {

P {

fontFamily = "times";

fontSize = 14;

}

}

The rule in the DEFAULT section is applied to elements if no other rule sets the value
for lineHeight. The rule expresses that the line height is the font size of the
element itself (Self) multiplied with 1.5. This is an example of a constraint which
expresses a relationship between two values on the same element. PSL96 can also
express constraints between values on different elements, and geometrical constraints
between the bounding boxes of different elements. Geometrical constraints have
their own syntax:

LI {

VertPos: Top = LeftSib . Actual Bottom;

}

The example above expresses that the vertical position (VertPos) of an LI element is
described by a constraint: the top (Top) of the element should be in the same place as
the left sibling's (LeftSib, i.e., older sibling) actual bottom (Actual bottom)
position. The distinction between actual and specified positions is one of the
differences between P94 and PSL96.

Chapter 4: Style sheet proposals for the web

177



4.9.2 Selectors

PSL96, like DSSSL and P93, use simple element name selectors. Here is a simple
example to style an A element like Mosaic [Mosaic] displays links:

A {

fgColor = "blue";

underlineNumber = 1;

}

In HTML, only A elements with HREF attributes are links. This can be described in
PSL96 by adding a logical expression within the block:

A {

if (getAttribute(self, "href") != "") then

fgColor = "blue";

underlineNumber = 1;

endif

}

While curly brackets mark the outer block, the inner block is marked by keywords
(then, endif).

4.9.3 Properties

PSL96 has a notion of schemas which may differ from one media to another
[Munson 1996]:

The grammar for all PSL schemas is the same, but the details (primitive types, attributes,
and dimensions) change between media.

Thus, PSL96 does not define a set of properties (called attributes in the quote above)
but delegates this to the schema associated with a media type [Munson 1996]:

For instance, Ensemble's text medium currently has 15 attributes controlling font
(FontFamily, Size, Bold, and Italic), hyphenation (Hyphenate, MinHyph, MinLeft,
MinRight), justification, indentation, line-spacing, visibility, foreground color, and
background color.

The Ensemble system [Graham 1992] also supports the video and graphics media,
which have their own properties. For example, graphics has the StrokeWidth and
Rotation properties [Munson 1996].

Cascading Style Sheets

178



4.9.4 Values and units

As described above, PSL96 does not describe properties but leaves this to a
presentation schema. For the purpose of this discussion, however, this author
assumes that the text schema is part of the PSL96 language.

Each PSL96 property accepts one of these values: boolean, string, real, or
application-specific enumeration. The value can either be explicit, or can be an
expression that returns a value.

The explicit values in PSL96 are fairly generic. Here are some examples:

HTML {

fontFamily = "times";

fontSize = 14;

fgColor = "black";

visible = No;

}

H1 {

fontFamily = "helvetica";

fontSize = 18;

visible = Yes;

}

PSL96 does not support different length units. Only numbers are allowed as values
and it is up to the application to interpret the value [Munson 2003].

4.9.4.1 Expressions

The expression language is what makes values in PSL96 interesting. Expressions in
PSL96 are based on P94, but go further by allowing constraints between arbitrary
elements to be described. The format of the expressions is:

<property> = <node expression> . <property>

The purpose of the node expression is to identify an element from which a property
value can be fetched. PSL96 provides a set of functions that can be combined to form
a node expression: Parent, LeftSib, RightSib, FirstChild, LastChild,
NthChild, Root, AncestorOfType, Creator, and AllChildren. Here are some
examples:

P { fontSize = Root . fontSize }

UL { Width = AllChildren . Width }

TD { HorizPos: Left = LeftSib . Right }

P { fontSize = FirstChild(LeftSib(Parent)) . fontSize }

Chapter 4: Style sheet proposals for the web

179



The first example sets the font size of P elements to be equal to the root element's
font size. The second example makes the width of the UL element equal to the width
of all its children. The third example makes the left edge of a TD element equal to the
right edge of its left sibling, thereby laying TD elements out horizontally. The fourth
example shows how node expressions can become complex; P elements are set to use
the same font size as their parent's left sibling's first child.

PSL96 expressions can also include mathematical operators common to
general-purpose programming languages including arithmetic, comparison, and
boolean operators. Also, common mathematical functions (such as min, max, and
round) and trigonometric functions are available. Here is an example which stacks
LI elements on top of each other, except for the middle element which starts
another stack of elements to the right of the existing one:

LI {

if (ChildNum(Self) == round(NumChildren(Parent) / 2 + 1)) then

VertPos: Top = Parent.Top;

HorizPos: Left = LeftSib.Left + Self.Width;

else

VertPos: Top = LeftSib.Actual Bottom;

HorizPos: Left = LeftSib.Left;

endif

}

4.9.4.2 Specified versus actual values

PSL96 recognizes the difference between specified and actual values and allows
geometrical constraints to refer to either. Consider these two rules:

UL { Width = AllChildren . Width }

UL { Width = AllChildren . Actual Width }

In the first rule, the width of the UL element is set to the specified width of its
children (i.e., not taking their content into account). The second rule refers to the
actual width of its children, which may be smaller since the content of the child
elements may not fill the entire specified width.20

20 The above example also shows a difference between the formatting models of PS96 and
CSS: block-level elements in CSS will, unless specified otherwise, fill the entire width of their
parent element regardless of content. This does not seem to be the case in P94/PSL96.

Cascading Style Sheets

180



4.9.5 Value propagation

PSL96 has four mechanisms for value propagation. In descending order of
precedence, they are:

• geometrical constraints: expressions can declare explicit geometrical constraints
between boxes and, thereby, propagate values;

• explicit default rules: these are the rules listed in the DEFAULT section of the
style sheet; and

• implicit default rules: in cases where the explicit default rule fails or does not
exist, the implicit default rule will be used. For example, the implicit default rule
can set properties to be inherited by using a rule of the form: Property =
Partent . Property.

4.9.6 Visual formatting model

The visual formatting model of PSL96 is similar to P94. Both are based on a
hierarchy of rectangular boxes some of which correspond to elements in the source
document.

In addition to the capabilities of P94, PSL96 can do out-of-order rendering. It can
be argued that out-of-order formatting is not a feature of the formatting model itself
but, rather, the transformation between a logical structure and a presentation
structure. However, in the case of PSL96, out-of-order formatting is so tightly
integrated with the geometry of the visual formatting model that it deserves a
discussion in this section.

The role of transformation languages in the context of style sheets was discussed
in Chapter 2. Style sheet languages, generally, can be split into two groups: those that
are transformation languages and those that are stream-based. The major benefit of
being a transformation language is that content can be reordered: content does not
have to be presented in the order it is received. The downside to transformations is
that progressive rendering no longer can be supported.

PSL96 is an interesting midpoint between transformation languages and
stream-based languages. PSL96 supports out-of-order presentation of content
without becoming a fully fledged transformation language. This is achieved by
placing geometrical constraints on elements. Consider the following:

Chapter 4: Style sheet proposals for the web

181



<TABLE>

<CAPTION>The table's caption</CAPTION>

<TR><TD>1</TD><TD>2</TD></TR>

<TR><TD>3</TD><TD>4</TD></TR>

</TABLE>

The CAPTION element is the first child of TABLE. In some cases one may want the
caption shown underneath the content of the table and this presentation can easily be
achieved in PSL96:

CAPTION { VertPos: Top = Parent . Bottom }

4.9.7 Linking mechanism

Each PSL96 style sheet has a HEADER section that declares the kind of medium
described by the style sheet describes (examples include Text and Mosaic), the
name of the view and the document language to which the style sheet applies. Here
is a sample HEADER section:

MEDIUM mosaic;

PRESENTATION links FOR html;

In the example above, the medium is Mosaic (which, at one point, was synonymous
with the web). The name of the view is links and the style sheet can be applied to
HTML documents.

4.9.8 Generated content

PSL96 has rich support for generated content. The underlying model is similar to
P94, but PSL96 uses different names and offers slightly enriched functionality.
Generated content is called tree elaborations by PSL96 and the generated content is
described in a section of the style sheet called ELABORATIONS. Here is an example:

Cascading Style Sheets

182



ELABORATIONS {

linebreak : Markup ("<BR>") {

visible = Yes;

}

arrow : Markup ("<IMG src=arrow-grey.gif>") {

visible = Yes;

}

url : Content (getAttribute(creator, "href")) {

visible = Yes;

fontSize = 12;

}

}

A {

if ( getAttribute(self, "href") != "" ) then

visisble = Yes;

fgColor = "blue";

underlineNumber = 1;

createRight (arrow, url, linebreak);

}

The style sheet above describes a presentation of links where the content of the A
element is shown in blue, underlined text. The last rule of the style sheet creates a set
of boxes to the right of the link text: first an arrow, then the URL and, finally, a line
break. The arrow and the line break are described by inserting HTML markup into
the presentational structure. The concept of generated markup rather than generated
content gives PSL96 functionality normally associated with transformation
languages without becoming a transformation language of its own.

4.9.9 Other formatting contexts

One of the goals of the research behind PSL is to investigate how style sheets can be
used to describe presentations of different media. (The concept is similar to media
types in CSS.) Munson [Munson 1994] describes how the Proteus system has been
adapted to three different media types: text, two-dimensional graphics and digital
video. In order to support a new media type, the elements of a medium must be known.
According to [Munson 1994], the elements of a media type are: “the set of primitive
object types, a set of dimensions in which objects are laid out, and a set of parameterized
formatting operations”. This idea is further developed in [Munson&Pfeiffer 1999],
which defines the MSPEC language for describing a media type.

Chapter 4: Style sheet proposals for the web

183



4.9.10 PSL96 in context

The PSL96 language was developed in a research environment over a decade starting
about 1990. The language is closely related to the P language (of which the 1994
version is described in the previous chapter). It reuses all major parts of P94.

PSL96 uses a more readable syntax than P94. Although not fully consistent, the
use of curly brackets instead of keywords and the colon sign (which is overloaded in
P94) makes PSL96 a more friendly language for humans. Also, PSL96 offers novel
functionality compared with P94 and other style sheet languages:

• PSL96 offers a node expression language which is used to declare constraints
between arbitrary elements. This allows PSL96 style sheets to present content
out of order without requiring a transformation language. However,
out-of-order rendering makes progressive rendering difficult, if not
impossible.

• Most style sheet languages support generated content, but PSL96 is the first to
propose that the style sheet should be able to generate markup. This feature is
another example of how PSL96 provides functionality normally associated with
transformation languages, without actually being a transformation language.

• PSL96 recognizes the difference between specified and actual values and allows
geometrical constraints to refer to either.

In several publications, PSL96 was proposed as a style sheet language for the web
[Munson 1996] [Marden&Munson 1998] [Marden&Munson 1999]. While PSL96
contains features that would be useful in a web context, the language has problems
that would need to be resolved before it could be implemented interoperably on the
web. The most serious problem is that PSL96 is more of a framework, for defining
style sheet languages for different media, than a well-defined style sheet language for
the web. PSL96 does not have a clearly defined list of properties and values from
which implementors can start working. It leaves this to media-type schema. If the
text schema is considered to be part of the PSL96 language (as the discussion above
does), one is closer to having a complete proposal.

The problem of extensibility remains yet. One of the features of PSL96 is that it
can be extended: client applications can offer access to functionality that otherwise is
not part of the PSL96 language. Most often, however, extensibility conflicts with
interoperability since an extensible language will result in many different profiles of
use. A style sheet language, which is generally used to express non-vital
presentations, is probably better suited for different profiles than most other

Cascading Style Sheets

184



languages. To this author, though, it still seems a better idea to define functionality
in a specification rather than leaving it up to applications.

The PSL96 authors observe [Munson 1996] that while there is a long history of
research on structured document editors, relatively little research has been done on
style sheet languages (or presentation specification languages as PSL96 calls them). In
another article [Marden&Munson 1999] this view is posed in stronger terms: “Style
sheet languages are terribly underresearched”. While PSL96 has not seen much use outside
the research communities, the research performed by – and provoked by – the PSL
team has been a significant contribution to the understanding of style sheet
languages.

4.10 Summary and conclusions
In the period 1993-1996 nine different style sheet languages were proposed for the
web, and HTML is the primary document language for all proposals. With the
exception of PSL96, all proposals were either quite simple from the outset, or
simplified subsets of style sheet languages developed before the web. (PSL96 is an
exception since it extends P94, rather than simplifying it.) None of the proposed
style sheet languages saw any real use on the web, but two of them (CHSS and SSP)
formed the basis for CSS.

This chapter has reviewed the proposals according to criteria established in the
previous chapter. The next chapter illustrates how all style sheet languages reviewed
so far, both those developed before and for the web, fulfill the requirements of the
web.

Chapter 4: Style sheet proposals for the web

185





Chapter 5:

Web requirements

In the previous two chapters, style sheet languages and proposals have been evaluated
according to the criteria established in Chapter 3. These evaluations have established
that the languages are, indeed, style sheet languages and that the proposals could be
developed into style sheet languages. However, the suitability of these languages for
the web has not been evaluated. Their evaluation is the topic of this chapter.

5.1 Web characteristics formulated as requirements
In order to evaluate suitability for web use, a set of requirements must be established.
Six key web characteristics that are likely to influence the design of style sheet
languages for the web are listed in the Chapter 1. These are revisited below and
reformulated as requirements for web style sheet languages.

• Later binding requires stream-based style sheets: On the web, the content and the
style sheet can be combined into a presentation at a very late stage: in the user's
computer. Current web browsers use progressive rendering to display
information as it is downloaded from the web and it is important that the
introduction of a style sheet does not slow down the presentation. Therefore, it
is requirement that style sheets can be applied to documents as they are
downloaded. One of the reviewed style sheet proposals has lent its name
(Stream-based Style sheet Proposal) to this requirement.

• Screen-centric publishing requires support for screen-based properties, values and
units: Print and screen are both visual media types and they can reuse many of the
same properties, values and units. However, in order to optimize presentations
for computer screens, it is necessary to support some extra properties, values and
units. For example, setting the background of a textual element is common in
screen-based designs, and a pixel unit is required to ensure that (say) a border is
exactly one pixel wide.

• Shared author/user influence requires negotiation between conflicting stylistic
preferences: The added flexibility of later binding makes it possible for both users

187



and authors to influence the presentation and it seems reasonable to make this a
requirement for style sheet languages on the web. One way of supporting
presentational negotiation is to combine style sheets from several sources.

• Multiple outputs require media-specific style sheets: Web content is displayed on
many types of output devices and style sheets must be able to express
presentations for a range of such. For example, are there properties for
non-visual media? Are units suitable for different types of output devices?
Finally, can the style sheet indicate that it should only be applied to certain
media types?

• Hyperlinked documents require link styling: Users have come to expect that
browsers record those links they have visited in the past. One of the ways of
differentiating between visited and unvisited hyperlinks is to style them
differently. In order to present hyperlinks, the browser, therefore, must use
information outside the documents and style sheets themselves.

• Uncertain delivery requires robustness. The internet is a medium prone to failure
and style sheet languages should, like other web mechanisms, be designed with
this in mind. If a style sheet fails to appear, the content should still be presentable
to the user. Robustness is therefore a requirement. One way to achieve
robustness is to have redundant presentational fallback values. Fallback values
must go beyond simply having default values for each property. For example,
default values are not able to distinguish between inline and block-level
elements.

When discussions on web style sheet languages started, these requirements had not
been formulated in writing, as is typical before new standardization efforts are
started. Writing the requirements retrospectively allows more experience to be used
in their formulation. Calling them requirements, however, may be too strong.
Indeed, none of the requirements are absolute in the sense that a style sheet language
would be deemed unusable if not all requirements were fulfilled.21

Also, it may be argued that it is unfair to evaluate style sheet languages according
to requirements for which they were not designed. For example, style sheet
languages developed before the web do not need a mechanism to increase the
robustness since the formatting process simply will not start until both the document

21 For example, it is impossible to fulfill the last requirement for documents written in generic
XML since the fallback mechanism typically is based on common knowledge which, by
definition, does not exist for generic XML.

Cascading Style Sheets

188



and the style sheet is available. Thererfore, it should be noted that a style sheet
language may be perfectly suitable for use outside of the web even if the
requirements discussed in this chapter are not met.

For the purpose of this thesis, however, it is necessary and important to evaluate
the pre-web style sheet languages and the web style sheet language proposals
according to the requirements of the web. This is done in Table 16.

Table 16: An evaluation of how different style sheet languages and proposals perform with
respect to web requirements. Positive evaluations are marked by a shaded background.

Stream-based
Screen-based
properties, values,
units

Negotiation
between
conflicting
stylistic
preferences

Media-specific
style sheets

Link styling Robustness

FOSI

To some extent,
FOSI can be
considered
stream-based. A
carefully written
FOSI style sheet
which avoids
some advanced
features
(including
cross-references,
floating, and
generated text)
and certain
selectors (e.g.,
the middle and
last values on
the occur
attribute) can be
rendered
progressively.

No. For example, there
is no pixel unit.

No. FOSI style
sheets are typically
applied by
authors/publishers,
and users only see
the printed
output. There
exists no
mechanism for
combining several
style sheets.

No, FOSI is
primarily
intended for
printing
documents and
has no concept of
media-specific
style sheets.

No, link styling is
not supported.

No, there is no
mechanism to
increase
robustness.

DSSSL

No, DSSSL is a
transformation
language at its
core and
requires a
complete
document in
order to start
processing.

No. For example, there
is no pixel unit.

No, there is no
support for
multiple style
sheets.

No, FOSI is
primarily
intended for
printing
documents and
has no concept of
media-specific
style sheets.

No, DSSSL has no
concept of links

No, there is no
mechanism to
increase
robustness

P94

Yes, P94 is a
language for
describing
presentations
and leaves the
task of
transforming the
document to its
sister language,
“T”

No. For example, there
is no pixel unit.

No. Multiple style
are supported by
way of views, but
the various style
sheets cannot be
combined.

Yes, a P94 style
sheet can define
several views, e.g.,
a print view and a
screen view.

No, P94 has no
concept of links.

No, there is no
mechanism to
increase
robustness

Chapter 5: Web requirements

189



Stream-based
Screen-based
properties, values,
units

Negotiation
between
conflicting
stylistic
preferences

Media-specific
style sheets

Link styling Robustness

RRP

Yes, RRP
supports
progressive
rendering

Yes, the proposal is
written with computer
screens in mind. For
example, it suggests how
color values can be
visualized on “terminals
which do not support
color”. There is no pixel
unit per se, but some
numeric values are
interpreted as pixels.

Multiple style
sheets are
supported, but
only as a way for
authors to replace
one style with
another inside a
document.

No,
media-specific
style sheets are
not discussed

Yes. RRP has rich
support for link
styling, including
what marks to put
before and after the
link. However, there
is no way to style
visited and unvisited
links differently.

The proposal
stresses that a
style sheet is a
list of hints or
suggestions.
This implies
that there will
be another
underlying
mechanism to
ensure that
documents can
be rendered
when a style
sheet is not
available.

PWP

Yes, PWP
supports
progressive
rendering

No. PWP includes a set
of properties to control
blinking of text, but
more basic features
(e.g., the pixel unit) are
lacking.

Multiple style
sheets are
discussed in the
proposal, and
implemented by
Viola. Like RRP,
however, only
authors are
allowed to specify
style sheets.

No,
media-specific
style sheets are
not discussed.

No, link styling is
not discussed.

Like RRP, PWP
does not
explicitly
describe a
mechanism for
increasing
robustness but
the Viola
implementation
was able to
render
documents
without style
sheets.

SHP

Yes. SHP
supports
progressive
rendering since
those features in
FOSI which
would make
progressive
rendering
impossible are
not part of the
subset.

No, SHP lacks
screen-based properties,
values and units.

No, unlike PWP,
SHP does not
discuss multiple
style sheets.

No,
media-specific
style sheets are
not discussed.

No, link styling is
not discussed.

Like RRP and
PWP, SHP
does not
explicitly
discuss
robustness, but
it seems likely
that
documents
were meant to
be rendered
even if a style
sheet was not
linked from the
document.

CHSS
Yes, CHSS is
stream-based.

Yes, CHSS supports
screen-based rendering.
The pixel unit is one of
several length units, and
the size of the screen
can be taken into
account when selecting
a style sheet.

Yes, CHSS
introduces the
concept of
cascading which
combines several
style sheets into
one presentation.

Yes,
media-specific
style sheets are
part of the CHSS
proposal.

No, link styling is
not discussed.

Yes, the default
style sheet in
the browser
allows
documents to
be rendered
even if
user/author
style sheets are
missing.

Cascading Style Sheets

190



Stream-based
Screen-based
properties, values,
units

Negotiation
between
conflicting
stylistic
preferences

Media-specific
style sheets

Link styling Robustness

JEP
Yes, progressive
rendering is
possible.

Yes, screen-based design
is supported. The pixel
unit is lacking, but some
novel features, including
the pcd unit (percent of
display) is supported.

Although JEP does
not support a
generic
mechanism for
combining style
sheets, it suggests
two schemes for
giving users
influence: font
mapping and
weighted rules.

JEP discusses how
to write style
sheets for
different output
media, but does
not propose a
syntax for doing
so.

The proposal
discusses whether it
should be possible
to “specify styles for
anchors”, but does
not propose a
syntax.

Yes, the
proposal
describes a
model where
browsers have
the capability
to render
HTML
documents and
can selectively
choose to
honor rules in
a style sheet.
For example,
the proposal
says “a browser
which highlights
hypertext
anchors by
underlining them
is encouraged to
ignore any
underline
specifications in
the stylesheet”.

SSFP
Yes, progressive
rendering is
possible.

No. For example, there
is no pixel unit.

No, multiple style
sheets are not
discussed.

No,
media-specific
style sheets are
not discussed.

No, link styling is
not supported. (Link
behaviors are
described, however.)

No. The
proposal
mentions
“specification of
fallback
processing” as
an issue which
is not yet
considered.

DSSSL
Lite

No. DSSSL-Lite
is, like DSSSL
itself, a
transformation
language.

The proposal has one
feature, the iconify
flow object, which is
only implementable on a
dynamic display. The
proposal does not list
values and units.

No, multiple style
sheets are not
discussed.

No,
media-specific
style sheets are
not discussed.

The proposal
mentions that
“objects/characteristics
for linking” are
necessary, but they
are not described.

Not discussed.

SSP

Yes. The
proposal has
“stream-based” in
its name to
emphasize the
importance of
this feature.

Yes. Some properties
interpret numeric values
as pixels, and it is
possible to set the
background of elements.
Some properties
(including isman and
minimized) only make
sense in a screen-based
environment.

No, multiple style
sheets is not
supported.

Yes, SSP sketches
and discusses
support for
media-specific
style sheets. One
example in the
proposal is to set
different color
values based on
the type of
display in use.

No, there is no
support for link
styling. (Link
behaviors are
described, however.)

Not discussed.

Chapter 5: Web requirements

191



Stream-based
Screen-based
properties, values,
units

Negotiation
between
conflicting
stylistic
preferences

Media-specific
style sheets

Link styling Robustness

PSL96

PSL96 is an
interesting
midpoint
between
transformation
languages and
stream-based
languages. PSL96
allows
out-of-order
presentation, and
progressive
rendering can
therefore be
impossible.

PSL96 has been
implemented in a
screen-based browser
[Marden&Munson 1997]
[Marden&Munson 1998],
but does not support
screen-oriented
properties, units or
values. For example, the
pixel unit is not
supported.

No. Multiple style
are supported by
way of views, but
the various style
sheets cannot be
combined.

Yes, PSL96 style
sheets can define
different views,
e.g., a print view
and a screen
view.

One of the possible
views in PSL96 is the
links view which, for
example, can list all
links along with their
target URLs.
However, it is not
possible to style
links based on
external
information, for
example if a link has
been visited or not.

The proposal
does not
describe any
mechanism to
increase the
robustness of
renderings, but
the authors'
modified
Mosaic
browser is able
to present
HTML
documents
without
attached style
sheets.

As can be seen in Table 16, none of the style sheet languages evaluated so far
addresses all web requirements. The one that comes closest is CHSS which only fails
to address link styling. CHSS was subsequently developed into CSS and link styling
was added in the process. CSS is the topic of the next chapter and an evaluation of
CSS, similar to Table 16, can be found in Table 21.

5.2 Summary and conclusions
The web adds several new requirements for style sheet languages. In order for a style
sheet language to succeed on the web it should:

• be stream-based, so that content can be presented progressively;

• support screen-based properties, values and units;

• be able to combine multiple style sheets;

• support media-specific style sheets;

• offer link styling to distinguish visited links from non-visited links; and

• be robust, in case the linked style sheet does not appear.

It may be argued that the additional requirements added by the web change the
design of style sheet languages to the extent that the term “style sheets” is no longer
appropriate. Finding a new name might also lessen tensions between communities

Cascading Style Sheets

192



developing languages designed for the web and languages designed prior to the web.
By now, however, “style sheets” is firmly established.

None of the pre-web style sheet languages nor the style sheet language proposals
fulfill every requirement described in this chapter. In order to fulfill these
requirements, a new style sheet language had to be developed. The next chapter
describes one such effort.

Chapter 5: Web requirements

193





Chapter 6:

Cascading Style Sheets

In the previous chapters, style sheet languages before and for the web have been
described. However, as the last chapter concluded, none of them comprehensively
addressed the needs of the web. In this chapter Cascading Style Sheets is presented and
evaluated according to the same criteria used to evaluate the other languages and
proposals.

CSS was developed in part by this author, along with Bert Bos, the W3C HTML
and CSS Working Groups and the community at www-style. Two of the proposals
discussed in Chapter 4, CHSS and SSP, formed the basis for CSS's development and
many people contributed ideas along the way.

CSS is defined in W3C Recommendations. W3C has issued two major CSS
specifications: CSS1 was released in December 1996, and CSS2 was released in May
1998. Both levels are based on the same core syntax and CSS1 is (with some minor
exceptions) a subset of CSS2. Unless otherwise noted, the discussion below refers to
CSS2.

6.1 Syntax
CSS uses a simple syntax. Here is an example:

H1 { font-size: 2em }

The rule in the example above consists of two main parts: selector (H1) and declaration
(font-size: 2em). The declaration has two parts: a property (font-size) and a
value (2em). While the example above tries to influence only one of the properties
needed for rendering a document, it qualifies as a style sheet on its own. Combined
with other style sheets it will determine the final presentation of the document.

Several declarations can be grouped in a declaration block:

BODY {

margin: 3em;

font-family: "Gill Sans", sans-serif;

}

195



Declarations inside the declaration block (enclosed by curly brackets) are separated
by semicolons. The last declaration is optionally followed by a semicolon. The first
declaration in the example above sets the margin around the BODY elements to be
3em. The em unit refers to the font size of the element. In this case, the result is that
the margins around the BODY element are three times wider than the font size of the
BODY element. The margin property is an example of a shorthand property which
sets values on several other individual properties at the same time (in this case, the
margin-top, margin-right, margin-bottom and margin-left).

The second declaration in the above example has a comma-separated list of font
families as value. If the first value cannot be used (i.e., if the Gill Sans font is not
available), the next value will be tried, and so forth. Only some CSS properties
accept lists as values.

Selectors can also be grouped in comma-separated lists:

H1, H2 {

font-weight: bold;

}

In the example above, the declaration block applies to both H1 and H2 elements.
Most of the logic in CSS is expressed in selectors. Here is a more ambitious

example:

DIV.ingress P:first-line {

text-transform: uppercase;

}

In plain text, the rule above reads: the first line of all P elements inside DIV elements
of class ingress should be transformed to uppercase. Advanced selectors like this
one are described in more detail below.

6.1.1 Forward-compatible parsing

The CSS specifications describe two kinds of grammars. First, they describe the
parsing rules for the respective level of CSS (i.e., CSS1 and CSS2). Second, they
describe a grammar that is valid for all levels of CSS: past, present and future. The
purpose of the forward-compatible parsing is to allow future levels of CSS to
include new functionality while ensuring that older implementations can parse the
new style sheets. The old implementation will not understand the new features but
will know which parts of the style sheet it does not understand.

Cascading Style Sheets

196



In return for backwards compatibility, future levels of CSS must follow certain
rules when adding new functionality. New selectors, properties and values can easily
be added since the forward-compatible parsing rules instruct parsers to ignore rules
with unknown parts. Here is an example:

:foo { color: red }

P { foo: red }

P { color: foo }

P { color: blue }

The first three rules are invalid in CSS1 and CSS2 (due to the selector, property and
value, respectively). Conforming CSS1/CSS2 implementations will, due to the
forward-compatible parsing rules, ignore each of the invalid rules and resume normal
parsing after the right curly bracket (}). The last rule is valid and will have the normal
effect.

6.1.2 At-keywords

The forward-compatible parsing rules also allow more advanced constructs to be
introduced through at-keywords. An at-keyword starts with an '@' sign, immediately
followed by the name of the keyword. The forward-compatible parsing rules state
that “an at-rule consists of everything up to and including the next semicolon (;) or the next
block, whichever comes first” [CSS2 1998]. This rule allows new syntactic structures to
be introduced into CSS.

CSS1 uses an at-keyword to import one style sheet into another:

@import "mystyle.css";

CSS2 used the at-keyword extension mechanism and added four additional
at-keywords:

@charset "ISO-8859-1";

@font-face {

font-family: "Robson Celtic";

src: url("http://www.example.com/fonts/rob-celt");

}

@page {

size: 8.5in 11in;

}

@media print {

BODY { font-size: 10pt }

}

Chapter 6: Cascading Style Sheets

197



The four at-keywords respectively describe: the character set used in the CSS style
sheet; downloadable font resources, paged media, and media-dependent style sheets.

The purpose of the forward-compatible parsing rules is to ensure that future levels
of CSS can introduce new features without breaking older implementations.

6.2 Selectors
CSS has a rich set of selectors and most of the logic that can be expressed in CSS is
written into selectors. Other languages, e.g. DSSSL, P94, and PSL96 have simple
selector mechanisms, but more complex expressions.

For example, when selecting an element based on its type (NOTE in the example
below) and the existence of an attribute (WARNING), CSS expresses this in a selector:

NOTE[WARNING] { ... }

DSSSL, on the other hand, will only put the element type in the selectors and
express the attribute requirement inside an if statement.

(element NOTE

(if (not (node-list-empty? (attribute "WARNING")))

...

))

Two aspects of CSS selectors deserve further discussions: the notion of simple vs.
contextual selectors, and pseudo-selectors. They are each discussed below, followed
by an overview of the selectors in CSS1 and CSS2.

6.2.1 Simple and contextual selectors

CSS1 distinguishes between simple and contextual selectors. A simple selector is a
selector that matches an element based on its type and/or attributes, but not the
element's position in the document structure.

In contrast, a contextual selector is a selector that matches an element based on its
position in the document structure. A contextual selector consists of several simple
selectors.

In order to support contextual selectors, browsers must keep a stack of open
elements so that all simple selectors of the contextual selector can be evaluated. This
task is further complicated when an element is present according to the DTD but
the corresponding tags do not appear in the document. For example, this is often the
case with the BODY element in HTML, and implementations must, therefore, have

Cascading Style Sheets

198



knowledge of the HTML DTD. Most early web browsers did not keep a stack of
open elements and, therefore, could not support contextual selectors.

One reason why the relatively advanced contextual selectors were present in the
relatively simple CSS1 specification was to set borders around clickable images. The
Netscape browser supported this feature through proprietary extensions and it was
deemed, therefore, to be a required feature in CSS1 as well. Here is a quote from
Appendix A of the CSS1 Recommendation:

/* setting the anchor border around IMG elements

requires contextual selectors */

A:link IMG { border: 2px solid blue }

A:visited IMG { border: 2px solid red }

A:active IMG { border: 2px solid lime }

Another reason why CSS1 requires support for contextual selectors was to increase
awareness among implementors that the tags in HTML represent document
structure and not formatting instructions.

In retrospect, it may have been a mistake to make contextual selectors part of the
CSS1 specification. Implementations did not support this feature in an interoperable
manner until several years later and this delayed the deployment of CSS1. On the
other hand, by having contextual selectors, CSS contributed to the understanding of
HTML as a structured markup language.

CSS2 further extended the range of contextual selectors. See Tables 17 and 18.

6.2.2 Pseudo-elements and pseudo-classes

CSS1 introduces the concept of pseudo-elements and pseudo-classes which have
their own selectors.

The general model of CSS is to attach style properties to elements found in the
source document. A CSS style sheet adorns the source tree with stylistic settings.
This allows WYSIWYG editing of the document: the structures seen on the screen
correspond directly to elements in the source document.

This simple system of mapping source elements to display objects, however,
excludes some common typographic effects as well as some dynamic effects that are
useful in interactive documents. For example, there is no element that corresponds
to the first line of text as formatted on the screen, and there is no attribute that
describes if a link has been visited or not.

Chapter 6: Cascading Style Sheets

199



CSS has two extensions to address these problems: pseudo-elements and
pseudo-classes. A pseudo-element is a part of an element that does not correspond
to a real element in the source document but corresponds to a display object. In
CSS1 there are two pseudo-elements: the first-letter of an element and the
first-line as it appears on the display.

Pseudo-classes reflect the fact that the same element must sometimes be given
different styling, depending on external information not found in the document. For
example, a hyperlink is usually displayed in a different style after the user has visited
the target, even though nothing in the source document has changed. CSS1 has
three such pseudo-classes: link, visited and active.

Pseudo-elements and pseudo-classes permit a designer to enrich the structure of a
source document without having to use a full-blown transformation language. CSS2
has added both new pseudo-classes and new pseudo-elements.

6.2.3 Selectors in CSS1

Table 17 gives an overview of the selectors that are available in CSS1.

6.2.4 Selectors in CSS2

In addition to the selectors in CSS1, CSS2 added several selector types. See
Table 18.

The selectors that were added in CSS2 add expressiveness and make CSS
applicable to languages other than HTML.

6.3 Properties
CSS1 describes a basic set of properties for visual formatting. CSS2 extends the set by
adding properties, especially in the areas of printing and aural presentations.

For some properties, CSS provides a shorthand syntax for setting several values in
one declaration. Here is an example:

P { font: 10px/12px sans-serif }

In the example above, the value of six individual properties (font-style,
font-weight, font-variant, font-size, line-height, and font-family) are
set through the use of one shorthand property (font). The benefit of shorthand
properties is that they reduce the length of style sheets making them more readable.

Cascading Style Sheets

200



Table 17: Selectors in CSS1.

Pattern Meaning

E Matches any E element (i.e., an element of type E).

E F This contextual selector matches any F element that is a descendant of an E element.

E:link

E:visited

Matches element E if E is the source anchor of a hyperlink of which the target is not yet visited (:link) or
already visited (:visited).

E:active

E:hover

E:focus

Matches E during certain user actions.

DIV.warning The same as DIV[class~="warning"] in CSS2.

E#myid Matches any E element with ID equal to myid.

Table 18: Selectors added in CSS2.

Pattern Meaning

* The universal selector matches any element.

E > F Matches any F element that is a child of an element E.

E:first-child Matches element E when E is the first child of its parent.

E:lang(c)
Matches element of type E if it is in (human) language c (the document language specifies how
language is determined).

E + F Matches any F element immediately preceded by an element E.

E[foo] Matches any E element with the foo attribute set (whatever the value).

E[foo="warning"] Matches any E element whose foo attribute value is exactly equal to warning.

E[foo~="warning"]
Matches any E element whose foo attribute value is a list of space-separated values, one of which
is exactly equal to warning.

E[lang|="en"]
Matches any E element whose lang attribute has a hyphen-separated list of values beginning (from
the left) with en.

Also, shorthand properties provide a grouping of properties (similar to FOSI) that
encourages designers to group related values.

Shorthand properties are sometimes criticized for making it more difficult to
write parsers. The '/' used in the example above is borrowed from traditional
typography, but the character is not used in other properties. Therefore, CSS parsers
must add a special code to handle the syntax of the shorthand properties. Also, with
the introduction of DOM APIs [DOM1 1998] to read/write the value of CSS
properties, the shorthand properties pose an additional problem.

Table 19 lists all properties in CSS1. In the values column, a formal syntax is used
to indicate the legal syntax of values: A bar (|) separates two or more alternatives,

Chapter 6: Cascading Style Sheets

201



exactly one of them must occur; A double bar (||) separates two or more options;
one or more of them must occur in any order.

It is noteworthy that a significant number of the properties (22 of 53) describe the
boxes around elements (the margin/border/padding areas). The high number is a
result of having separate properties for each area on each of the four sides of the box.
Also, border styles and border colors can be described on each side and there are
shorthand properties to set margins, borders and padding for all four sides at once.

In other areas the number of CSS1 properties is kept to a minimum. For example,
the background-position property, which describes a pair of coordinates, is a
single property. An alternative solution where background-position is a
shorthand property for (say) background-position-x and
background-position-y, the number of properties would increase, but the values
on the individual properties would be simpler to parse. By dropping the shorthand
property altogether, parsing CSS would become simpler but style sheets would
become longer and arguably more difficult to write.

A number of properties were added in CSS2 and Table 20 lists all properties
present in CSS2 that are not in CSS1. Also, the display and list-style-type

properties are listed since their values were significantly extended in CSS2.
Most of the properties added to CSS2 extend the visual formatting model. For

example, the position and z-index properties added absolute and relative
positioned elements. Also, some properties were added to better support certain
media types, in particular printing and aural presentations.

6.4 Values and units
CSS offers a rich set of values and units. In particular, the relative length units are
powerful. There are six basic types of values:

• keywords: All properties accept one or more keyword values. The keyword
inherit is accepted on all CSS2 properties and most properties also have other
keywords among the accepted values. Among the commonly used keywords are
normal, none, auto, left, and right. CSS avoids binary keywords (like yes/no
and true/false) to more easily have room for additional values in the future.

• strings: Strings are enclosed in double quotes or single quotes. String values are
used when the namespace is unlimited and keywords, therefore, are too limited.
The difference between keywords and strings is blurred by the fact that the

Cascading Style Sheets

202



Table 19: Properties in CSS1.

Property Values

Font properties (6)

font-family [[<family-name> | <generic-family>],]* [<family-name> | <generic-family>]

font-style normal | italic | oblique

font-variant normal | small-caps

font-weight normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900

font-size <absolute-size> | <relative-size> | <length> | <percentage>

font
[ <font-style> || <font-variant> || <font-weight> ]? <font-size> [ / <line-height> ]?
<font-family>

Color and background properties (7)

color <color>

background-color <color> | transparent

background-image <url> | none

background-repeat repeat | repeat-x | repeat-y | no-repeat

background-attachment scroll | fixed

background-position [<percentage> | <length>]{1,2} | [top | center | bottom] || [left | center | right]

background
<background-color> || <background-image> || <background-repeat> ||
<background-attachment> || <background-position>

Text properties (8)

word-spacing normal | <length>

letter-spacing normal | <length>

text-decoration none | [ underline || overline || line-through || blink ]

vertical-align baseline | sub | super | top | text-top | middle | bottom | text-bottom | <percentage>

text-transform capitalize | uppercase | lowercase | none

text-align left | right | center | justify

text-indent <length> | <percentage>

line-height normal | <number> | <length> | <percentage> <percentage>

Box properties (26)

margin-top <length> | <percentage> | auto

margin-right <length> | <percentage> | auto

margin-bottom <length> | <percentage> | auto

margin-left <length> | <percentage> | auto

margin [ <length> | <percentage> | auto ]{1,4}

padding-top <length> | <percentage>

padding-right <length> | <percentage>

padding-bottom <length> | <percentage>

padding-left <length> | <percentage>

Chapter 6: Cascading Style Sheets

203



Property Values

padding [ <length> | <percentage> ]{1,4}

border-top-width thin | medium | thick | <length>

border-right-width thin | medium | thick | <length>

border-bottom-width thin | medium | thick | <length>

border-left-width thin | medium | thick | <length>

border-width [thin | medium | thick | <length>]{1,4}

border-color <color>{1,4}

border-style none | dotted | dashed | solid | double | groove | ridge | inset | outset

border-top <border-top-width> || <border-style> || <color>

border-right <border-right-width> || <border-style> || n<color>

border-bottom <border-bottom-width> || <border-style> || <color>

border-left <border-left-width> || <border-style> || <color>

border <border-width> || <border-style> || <color>

width <length> | <percentage> | auto

height <length> | auto

float left | right | none

clear none | left | right | both

Classification properties (6)

display block | inline | list-item | none

white-space normal | pre | nowrap

list-style-type
disc | circle | square | decimal | lower-roman | upper-roman | lower-alpha | upper-alpha |
none

list-style-image <url> | none

list-style-position inside | outside

list-style
[disc | circle | square | decimal | lower-roman | upper-roman | lower-alpha | upper-alpha |
none] || [inside | outside] || [<url> | none]

font-family property accepts arbitrary font names without requiring quote
marks around them.

• numbers (e.g., 3): Numbers can be either integer or real numbers. Some
properties accept only integer values (e.g., the orphan property) while others
accept both integer and real numbers (e.g., line-height).

• numbers with units (e.g., 3em): Numbers with units are most often used to
express lengths, but they also express angles (e.g., 90deg), times (e.g., 10ms), and
frequencies (e.g., 3kHz) on the aural properties. Length units are further
described below.

Cascading Style Sheets

204



Table 20: Properties introduced in CSS2.

Property Values

border-collapse collapse | separate | inherit

border-spacing <length> <length>? | inherit

caption-side top | bottom | left | right | inherit

clip <shape> | auto | inherit

content
[ <string> | <uri> | <counter> | attr(X) | open-quote | close-quote | no-open-quote |
no-close-quote ]+ | inherit

counter-increment [ <identifier> <integer>? ]+ | none | inherit

counter-reset [ <identifier> <integer>? ]+ | none | inherit

cursor
[ [<uri> ,]* [ auto | crosshair | default | pointer | move | e-resize | ne-resize | nw-resize | n-resize
| se-resize | sw-resize | s-resize | w-resize| text | wait | help ] ] | inherit

direction ltr | rtl | inherit

display
inline | block | list-item | run-in | compact | marker | table | inline-table | table-row-group |
table-header-group | table-footer-group | table-row | table-column-group | table-column | table-cell
| table-caption | none | inherit

empty-cells show | hide | inherit

font-size-adjust <number> | none | inherit

font-stretch
normal | wider | narrower | ultra-condensed | extra-condensed | condensed | semi-condensed |
semi-expanded | expanded | extra-expanded | ultra-expanded | inherit

left <length> | <percentage> | auto | inherit

list-style-type
disc | circle | square | decimal | decimal-leading-zero | lower-roman | upper-roman | lower-greek |
lower-alpha | lower-latin | upper-alpha | upper-latin | hebrew | armenian | georgian |
cjk-ideographic | hiragana | katakana | hiragana-iroha | katakana-iroha | none | inherit

marker-offset <length> | auto | inherit

marks [ crop || cross ] | none | inherit

max-height <length> | <percentage> | none | inherit

max-width <length> | <percentage> | none | inherit

min-height <length> | <percentage> | inherit

min-width <length> | <percentage> | inherit

orphans <integer> | inherit

outline [ 'outline-color' || 'outline-style' || 'outline-width' ] | inherit

outline-color <color> | invert | inherit

outline-style <border-style> | inherit

outline-width <border-width> | inherit

overflow visible | hidden | scroll | auto | inherit

page <identifier> | auto

page-break-after auto | always | avoid | left | right | inherit

page-break-before auto | always | avoid | left | right | inherit

Chapter 6: Cascading Style Sheets

205

http://www.w3.org/TR/REC-CSS2/tables.html#propdef-border-collapse
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-border-spacing
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-caption-side
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-clip
http://www.w3.org/TR/REC-CSS2/visufx.html#value-def-shape
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-content
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-string
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-uri
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-counter
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-counter-increment
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-identifier
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-integer
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-counter-reset
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-identifier
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-integer
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-cursor
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-uri
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-direction
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-display
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-empty-cells
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-size-adjust
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-number
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/fonts.html#propdef-font-stretch
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-left
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-list-style-type
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-marker-offset
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/page.html#propdef-marks
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-max-height
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-max-width
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-min-height
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visudet.html#propdef-min-width
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/page.html#propdef-orphans
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-integer
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-color
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-style
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-width
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-color
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-style
http://www.w3.org/TR/REC-CSS2/box.html#value-def-border-style
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/ui.html#propdef-outline-width
http://www.w3.org/TR/REC-CSS2/box.html#value-def-border-width
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-overflow
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/page.html#propdef-page
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-identifier
http://www.w3.org/TR/REC-CSS2/page.html#propdef-page-break-after
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/page.html#propdef-page-break-before
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit


page-break-inside avoid | auto | inherit

position static | relative | absolute | fixed | inherit

quotes [<string> <string>]+ | none | inherit

right <length> | <percentage> | auto | inherit

size <length>{1,2} | auto | portrait | landscape | inherit

speak-header once | always | inherit

table-layout auto | fixed | inherit

text-shadow
none | [<color> || <length> <length> <length>? ,]* [<color> || <length> <length> <length>?] |
inherit

top <length> | <percentage> | auto | inherit

unicode-bidi normal | embed | bidi-override | inherit

visibility visible | hidden | collapse | inherit

widows <integer> | inherit

z-index auto | <integer> | inherit

• percentages (e.g., 30%): Percentage values are similar to relative length units in
the sense that they are relative to another value. Each property that accepts a
percentage value also defines to what other value the percentage is relative. Most
percentage values refer to width of the closest block-level ancestor but some
refer to other values, for example, the font size of the parent element. For this
reason, percentage values have been criticized for being inconsistent and this is
discussed further below.

• functions (e.g., counter(chapter)): Some advanced properties accept a
functional notation for values. This is typically the case when the value refers to
an arbitrary object and it is not possible or natural to use a string value. For
example, the content property in CSS2 uses a function to refer to the name of
an attribute. The string value cannot be used for this since strings have another
meaning on the property.

Some properties accept several values, either space-separated (in cases where values
are complementary) or comma-separated (in cases where values are alternatives).

6.4.1 Length units

CSS length units can be classified into absolute and relative units.
The absolute units are:

• in: inches

Cascading Style Sheets

206

http://www.w3.org/TR/REC-CSS2/page.html#propdef-page-break-inside
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-position
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/generate.html#propdef-quotes
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-string
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-string
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-right
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/page.html#propdef-size
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-speak-header
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/tables.html#propdef-table-layout
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/text.html#propdef-text-shadow
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-color
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-top
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-length
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-percentage
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-unicode-bidi
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visufx.html#propdef-visibility
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/page.html#propdef-widows
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-integer
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit
http://www.w3.org/TR/REC-CSS2/visuren.html#propdef-z-index
http://www.w3.org/TR/REC-CSS2/syndata.html#value-def-integer
http://www.w3.org/TR/REC-CSS2/cascade.html#value-def-inherit


• cm: centimeters

• mm: millimeters

• pt: points (in CSS one point is equal to 1/72nd of an inch)

• pc: picas (1 pica is equal to 12 points)

The relative units are:

• em: the font size of the current element

• ex: the x-height of the current element's font

• px: refers to pixels (see discussion below)

None of the length units is unique to CSS. The definition of the px unit, however,
is novel. Although px refers to the term pixel, the unit is formally defined as a
certain viewing angle from the user's perspective rather than the width of a pixel.
The reason for not using the most simple and obvious definition is that the width of
a pixel will vary considerably from one device to another. Also, as the resolution of
output devices increases over time, style sheets should ideally not have to change
accordingly.

CSS, therefore, defines a reference pixel and prescribes that output devices,
where pixels sizes are “very different”, adjust the px unit accordingly. The suggested
reference pixel is the visual angle of one pixel on a device with a pixel density of 90
dpi and a distance from the reader of an arm's length. For a nominal arm's length of
28 inches, the visual angle is about 0.0227 degrees.

The CSS specification encourages the use of relative length units by stating that
“absolute length units are only useful when the physical properties of the output medium are
known”. By using relative length units, documents will scale better in different user
environments.

To some extent, CSS's lack of logical expressions (e.g., compared with DSSSL
and P94) and general constraints (compared to PSL96) is compensated for by the
repertoire of relative length values. However, the relative values have also been
criticized for being irregular. PSL96's authors [Marden&Munson 1998] write:

Chapter 6: Cascading Style Sheets

207



Nearly every CSS property has different rules for the values on its right-hand side and it is
not much of an exaggeration to say that each property's right-hand side has its own
specialized language. This point is illustrated by the line-height property. It does not
accept the keywords that can be used with font-size and, in addition, percentages are
interpreted relative to the font-size of the current element, rather than relative to the parent
element's line-height. For example, this rule

EM { line-height: 200%; }

specifies that the line height for elements EM should be twice as large as its font size. This
is a natural way to specify line height, but it is not consistent with the treatment of
percentages in other parts of the language.

It is correct that percentage values in CSS refer to different values. For example,
percentages can refer to the font size of the parent element (e.g., font-size), the
font size of the current element (e.g., line-height), and the width of the
containing block (e.g., margin-left). However, this author will argue that, most
often, the referred values is the right choice and that the described limitation not has
hindered, but rather helped, authors by making style sheets easier to write.

6.5 Value propagation
CSS has three principal mechanisms for value propagation: cascading, inheritance
and initial values. Together, the three mechanisms ensure that all element/property
combination always have a value.

The relative strengths of the three mechanisms are different. Cascading is the
strongest: if the cascading process yields a value, it will be used. If cascading does not
yield a value (or yields the inherit value) the parent element's value will be used.
The initial value comes third and will only be used if neither of the other
mechanisms yield a value (or if they yield the initial value).

6.5.1 Cascading

The cascading mechanism in CSS is multi-faceted and serves several purposes. This
section will start by describing how the most basic function works, i.e., how the
cascading mechanism chooses between several conflicting declarations for a given
element/property combination. Further, two different ways of using the basic
cascading mechanism are discussed: how conflicts between authors and users are
resolved; and how partial style sheets are combined with the browser's default style
sheet.

Cascading Style Sheets

208



6.5.1.1 The basic cascading mechanism

When more than one style sheet declarations are trying to set a particular property
value on a specific element, the cascading mechanism will pick one winning
declaration. The winning declaration will be given full control of the value in
question.The cascading mechanism in CHSS was different; it proposed to blend
several values into one resulting value.

The challenge is to pick the right declaration. Whenever a conflict between
declarations is detected, the winning declaration is found by comparing three factors:
the origin, specificity, and order of appearence in the style sheet. The three factors
are ordered in the sense that the specificity is only relevant if the origin does not yield
a winning declaration, and the order is only relevant if the specificity does not yield a
winning declaration.

There are three possible origins in CSS: author, user and browser. By default,
author declarations win over user declarations, and user declarations win over
browser declarations. However, declarations may also be marked as !important and
thereby win over other declarations. In the (somewhat contrived) example below,
the first declaration will win over the second one due to being marked as
!important:

H1 {

font-size: 3em !important;

font-size: 2em;

}

When marked !important, user declarations win over author declarations and
thereby give users the final say over the presentation of documents.

The seemingly simple technical solution described above has caused much stir in
the history of CSS. While the initial CHSS draft described a model where users
would “retain control”, early CSS drafts contained a !legal construct which gave
authors the final say [CSS draft1 1995]. The logic behind !legal was that there
were situations where authors are legally obliged to present content in a certain way.
Realizing that CSS never could make any guarantees about the final presentation of
the content, the !legal construct was removed in CSS1. However, the author was
still given the final say since author declarations marked !important win over user
declarations marked !important in CSS1. After intense discussion inside the CSS
Working Group, the order was changed in CSS2 so that users again have the final
word. In practice, the change has had little effect on how documents are presented
since the !important construct is not widely used, but giving users the final say was

Chapter 6: Cascading Style Sheets

209



an important shift that emphasizes the difference between the web and traditional
publishing environments.

If the origin does not yield a winning declaration, the specificity of the selector
associated with the declarations must be computed. Consider this example:

* { color: silver }

LI { color: red }

UL LI { color: blue }

LI.warning { color: green }

The four declarations in the example above each have an associated selector. The
first selector (*) is the most general: it selects all elements in the document and is
called the universal selector. It is intuitively clear that the second selector is more
specific than the first since it only selects LI elements. The last two selectors each
select a subset of LI elements; one selects the LI elements with a warning attribute,
and the other selects LI elements with a UL ancestor. It is not intuitively clear which
of these selectors has the highest specificity.

CSS describes a formula for calculating the specificity of selectors:

• count the number of ID attributes in the selector (= a)

• count the number of other attributes and pseudo-classes in the selector (= b)

• count the number of element names in the selector (= c)

• ignore pseudo-elements.

Concatenating the three numbers a-b-c (in a number system with a large base) gives
the specificity. For the OL LI selector, the values are: a=0, b=0, c=2, and the
specificity is 2. For the LI.warning selector, the values are: a=0, b=1, c=1, and the
specificity is therefore 11.

If several conflicting declarations have the same specificity, the order that the
declarations appear in the style sheets finally determines the outcome. Later
declarations win over earlier ones.

6.5.1.2 Multiple sources: User versus author style sheets

In its most controversial role, the cascading mechanism serves as negotiator between
user and author. The role is controversial since the two groups are often perceived to
have opposing interests; users would like to retain final control of the presentation,
and so would authors (or their respective editors and publishing house). This is a
simplified view for two reasons. First, most users are happy to accept the presentation
suggested by the author. Often, the presentation is an important part of the reading

Cascading Style Sheets

210



experience offered by the publication and not merely a wrapper around the content.
Second, on the web users and authors are not two distinct groups. The web has
lowered the threshold for publishing content and many of the users are also authors
and vice versa.

Still, there are situations when authors and users have different, opposing,
interests. One example is the small print in contracts; the text has to be there for legal
reasons, but the author does not necessarily want to bring it to the attention of the
user. The user, on the other hand, may be particularly interested in reading what the
author wants to hide.

Several browsers support user-defined style sheets and are able to combine them
with author style sheets. However, few users write their own style sheets. There are
probably several reasons for this: the mechanism has not been promoted; writing
style sheets is challenging for most people; and it is almost impossible to write one
user style sheet that cascades well with all author pages. The last problem can be
addressed by allowing user style sheets on a per-site or per-page basis. The burden of
writing style sheets for all possible sites and pages may be too big for a single user, but
it may also be possible for users to share style sheets, for example on a peer-to-peer
basis.

The cascading mechanism is not necessarily tied to CSS style sheets. That is, a
browser may offer a way for a user to set a preference (say, the preferred font size)
through a Graphical User Interface (GUI) syntax but still use the cascading
mechanism to resolve conflicts between user settings and (say) incoming style sheets
from the author. By giving user preferences a well-defined place in the cascade,
browsers can offer a predictable resolution of conflicts.

Negotiating between users and authors may be the most well-known use of the
cascading mechanism but it is used rarely compared with another negotiation role:
combining style sheets from authors with the browser's default style sheet.

6.5.1.3 Combining partial style sheets with the browser's default style sheet

In addition to style sheets coming from authors and readers, CSS acknowledges a
third source of stylistic information, namely the browser. A browser that supports
CSS has a default style sheet which is combined with style sheets coming from the
author and/or reader. Sample default style sheet are listed in the CSS specifications
and – with some minor variations – implementations use the sample default style
sheet. This way, style sheets from the authors/users do not have to be complete.
They can be partial. Authors and users can focus on describing the differences

Chapter 6: Cascading Style Sheets

211



between the conventional presentation (as described in the default style sheet) and
the preferred presentation.

Combining style sheets from authors with the browser's default style sheet is a
widely used feature of cascading. A significant percentage of documents on the web
currently uses CSS, but few of the style sheets used are complete. Thus, they rely on
the cascading mechanism to combine the author's partial style sheet with the
browser's default style sheet into one complete presentation.

Browsers already did this, at a very simple level, before CSS was proposed in
1994. For example, users of XMosaic could modify the presentation of documents
by setting X11 resources. Combined with a hardcoded HTML style sheet, they
formed the presentation of documents.

It can be argued that all style sheet languages support the notion of partial style
sheets since they all use initial values and inheritance. These two mechanisms make
it possible to shorten style sheets and, thereby, make them partial. The cascading
mechanism, however, is more powerful since values can be set on element types
rather than on a per-property basis. This is an important increase in functionality on
which web authors have come to rely. For example, the suggested default style sheet
for HTML [CSS2 1998] includes a rule that renders STRONG elements in bold fonts.
Since the author's style sheet is combined with the browser's default style sheet, the
author does not have to specify the rendering of STRONG elements in all style sheets.
Similarly, if the color of text is the only issue of importance for the author, being
relieved of having to specify the value for the display property of every element is
beneficial.

6.5.2 Inheritance

Like DSSSL, CSS properties are either classified as inherited or not-inherited.
DSSSL and CSS mostly agree on which properties are inherited. All CSS properties
accept the inherit keyword which explicitly specifies that the value should be
fetched from the parent. If inherit is specified on the root element, the initial value
is used instead.

CSS distinguishes between specified, computed and actual values. Specified values
are found in style sheets. Computed values are processed to the extent possible
without laying out the document. Actual values are those actually used to render the
document. As a general rule, it is the computed value of a property that is inherited.
Properties may, however, specify that other sorts of values should be inherited

Cascading Style Sheets

212



instead. For example, the line-height property inherits the specified value if it is a
number.

6.5.3 Initial value

Each CSS property has an initial value which becomes the resulting value when
cascading and inheritance do not yield a value. Also, the initial value can be explicitly
specified with the initial keyword which all properties accept.

6.6 Visual formatting model
This section gives the overview of, and rationale behind, the CSS visual formatting
model (VFM). For the sake of readability, two assumptions are made to simplify the
description. First, it is assumed that the document language is written horizontally,
either left-to-right (e.g., the Latin script) or right-to-left (e.g., Arabic and Hebrew).
The second assumption is that the output device is continuous, as opposed to
paged media. The page model in CSS is described in the section on Other formatting
contexts in this chapter.

Although non-visual access to documents has been important in the development
of CSS, it is still the case that most people – if they have a choice – prefer visual over
non-visual presentations of text. Without a powerful visual formatting model CSS
would not have succeeded.

In the design process the led to the CSS VFM there were several requirements.
Though not formally specified before the work on the VFM started, they have been
formulated retrospectively.

• The VFM has to offer authors visual richness beyond what could be achieved by
using HTML alone.

• In order to convince browser vendors to implement CSS, the VFM has to be
simple enough to be implementable within tight shipping deadlines.

• The VFM has to support progressive rendering.

• The VFM has to be implementable on a wide range of visual devices.

• The VFM has to support dynamic output devices (such as computer screens
and projectors) as well as static output devices (such as printers).

Chapter 6: Cascading Style Sheets

213



• The VFM should be able to replicate common typographical effects. Ideally, one
should be able to take any book or magazine and design a CSS style sheet to
achieve the same layout.

• The VFM conformance requirements has to be specific enough to produce
consistent results in different browsers.

• The VFM conformance requirements has to be loose enough to allow
implementations on less-rich visual devices. For example, tty devices should be
able to support margins.

To some extent, these requirements are conflicting. There are three main axes:
simplicity vs. richness, pixel-perfection vs. device outreach, and short-term vs.
long-term goals. As in most designs, the CSS VFM is a compromise between
conflicting goals.

6.6.1 Creating boxes from elements

The CSS processing model [CSS2 1998] describes how documents are processed
from when they are downloaded in a browser to when they are presented in an
output device. The process involves five distinct steps:

1. parse document, create document tree

2. identify media type

3. retrieve style sheets

4. annotate every element

5. generate the formatting structure

In practice, implementations can optimize processing by doing several steps in
parallel.

The various boxes that make up the document presentation are created in stage 5
of the process. The collection of boxes is referred to as the presentational
structure. Often, the presentational structure will resemble the document tree
created in stage 1. For simple documents, there may even be a one-to-one mapping
between elements and boxes, but the mapping is typically more complex for several
reasons:

• an inline element that extends beyond the end of the line must be split into
several boxes;

• similarly, block elements are often split into two boxes at page breaks;

Cascading Style Sheets

214



margin

border

padding

content

Figure 4: The CSS box model.

• elements can be declared to be non-displayable (i.e., while they exist in the
logical structure, they do not exist in the presentational structure); and

• CSS2 style sheets can specify generated content in addition to the content
from the document tree. For example, the style sheet may specify that the string
“Chapter:” is to be added in front of all H1 elements. Generated content will
generate boxes of their own.

By supporting suppressed content and generated content, CSS is able to support
transformation-like tasks. However, due to being stream-based, CSS is not able to
reorder elements. As discussed in Chapter 2, other style sheet languages have taken a
different route by basing formatting on a computationally complete transformation
language.

6.6.2 The box model

A model of nested rectangular boxes forms the basis for VFM. In its simplest form,
each element in the source document is turned into a block box or inline box in the
output device. The content of the box is either text or graphics, and around the
content there are three bands: padding, border and margin. See figure 4.

By adding padding or margin around an element, it will be set apart from the
visual context and thereby emphasized. Similarly, adding a border will make the

Chapter 6: Cascading Style Sheets

215



element stand out. The width of each of the three bands can be adjusted on a
per-side basis. Thus, 12 individual properties and six shorthand properties can be set
on each element. In practice, relatively few elements use the provided features and,
therefore, it may seem excessive to support 18 properties on all elements.

There are several alternate designs which could have kept the CSS box model
simpler:

• By only supporting one band per element, the number of properties could have
been reduced by a factor of 3. The downside to this approach is that designs with
several bands would require nested elements in the source document. This was
the approach taken in early CSS drafts around July 1995 [CSS draft1 1995]
[CSS draft2 1995].

• Support for three bands could have been limited to block-level elements.
Inline elements could be simplified by (say) only supporting one band. This
approach was taken in early CSS drafts from August-November 1995
[CSS draft3 1995] [CSS draft4 1995] [CSS draft5 1995] [CSS draft6 1995].

• Bands could be treated as generated content. That is, elements would not
normally have bands around them, but one or more bands could be generated on
demand. CSS1 does not support generated content and this approach was not
pursued, therefore.

In CSS1, however, all three bands can be set on all elements. Designers are thereby
given a rich mechanism for framing elements. Since relatively few elements use the
non-zero padding, borders and margins, browsers can optimize how these properties
are represented internally.

6.6.2.1 Basic boxes: block and inline

Two of the basic building blocks of a document are inline and block boxes. Inline
boxes do not generate line breaks, while block-level boxes do. For example,
block-level boxes are used to generate paragraphs and headlines, and inline boxes are
used for emphasized text and hyperlinks. Both types of boxes use the same
three-layered box model described above but some of the rules for laying out boxes
differ.

For block elements, the outer edge of the margin area defines the size of the
element for layout purposes. That is, adjacent block elements will be pushed aside to
make room for an element based on its margin edge. As a special rule, margin areas
are allowed to collapse (i.e., overlap) vertically to not create excessive vertical gaps

Cascading Style Sheets

216



between boxes. Thus, the margin width represents the minimum vertical space to
adjacent elements.

Margin values can also be negative which results in boxes overlapping each other.
This feature can be used to create special effects, for example, in advertising. Due to
variations in font availability and font metrics, it is difficult to predict the visual result
of overlapping text elements and the feature, therefore, is not much in use. Also,
positioned elements (see below) provide another way to make elements overlap each
other.

Inline boxes are laid out somewhat differently. In order to preserve a uniform
interline spacing, setting padding/border/margin will not influence the vertical layout
of inline boxes. That is, the padding and border will be visible, but they will not
push aside other content. The margin is, by definition, transparent and therefore will
not have any effect vertically. Horizontally, all three areas will take up space.

6.6.2.2 Outside-in versus inside-out formatting

Another difference between block and inline boxes is the way their widths and
heights are computed. Unless explicitly specified, the width of a block box will grow
to fill all available horizontal space. Vertically, the height is determined by its
content. That is, block boxes use outside-in width computation and inside-out
height computation. The root element is constrained horizontally by the initial
containing block (ICB) which typically corresponds to the width of the window or
printing surface.

The width of an inline box is, on the other hand, defined by its content. That is,
the box will be as wide as necessary to have room for the content, but no wider. If
further spacing is required, padding/border/margins can be used to make more room,
but the width of the box cannot be changed. Height computations for inline
elements are often based on the content of the box, but, typically, the inline boxes
are a little taller than the text inside them. Comfortable reading demands more
vertical space between lines than what the fonts themselves contain. Therefore, CSS
has introduced a separate property (called line-height) to set the height of inline
boxes. Typically, the value of line-height is a factor which, when multiplied with
the font size, yields the height of the inline box. Thus, both the width and height are
computed inside-out, the width strictly so, the height typically so.

Chapter 6: Cascading Style Sheets

217



6.6.3 Beyond the basic box model

In addition to the basic block and inline boxes discussed above, CSS has several
kinds of boxes that extend the visual formatting model:

• Floating boxes: An element can be declared to be floating to the right or left
edge of its containing block. The most interesting feature of a floating box is
that other content may flow along its side.

• Marker boxes: List-item markers are placed inside marker boxes. In CSS1,
marker boxes are automatically generated and cannot be positioned or sized.

• Run-in boxes: These were introduced in CSS2 to support run-in headings, that
is, block elements where the heading is integrated into the first paragraph.
Run-in headings can also be expressed in CSS1, but then an extra container
element is required around the heading and the first paragraph. By having the
run-in defined as a special box, the markup doesn't have to be changed to
achieve the typographical effect.

• Compact boxes: These were introduced in CSS2 mainly so that the compact
attribute on the UL, OL and DL elements could be deprecated in HTML4
[HTML4 1997]. The typographic effect of declaring an element to be compact is
that the corresponding box is placed in the margin of the next block-level
element, if possible. This kind of formatting is often used in dictionaries to save
vertical space. Unlike run-in boxes, there is no way to achieve the typographical
effect of compact boxes through other means.

• Absolutely-positioned boxes: These boxes are taken out of the normal flow and
absolutely positioned relative to their containing blocks. Their position and size
are set by the following properties: top, right, bottom, left, width, height.
If the dimensions of an absolutely-positioned box are under-specified, the
principles of inside-out formatting will be used to determine its size.

• Fixed-positioned boxes: These boxes are like absolutely-positioned boxes with
the exception that they use the viewport as the reference for positioning (instead
of the containing block). This way, certain elements can remain on the screen
while the rest of the document scrolls.

• Relatively positioned boxes: Once a box has been laid out according to the
normal flow, it may be shifted relative to this position through the
top/right/bottom/left properties.

Cascading Style Sheets

218



• Page boxes: To improve printing of web pages, the VFM has added the concept
of page boxes to allow page margins and running headers and footers to be
specified.

• Tables: Tables are used extensively for layout purposes on the web. Most pages
using tables could be improved by using floating and positioned elements instead
of tables, but tables also have legitimate use in documents. CSS2 introduced
support for tables by borrowing the table model from HTML and adding more
presentational features.

6.6.4 Inspiration from other formatting models

In the early design phases of the CSS visual formatting model, other formatting
models were frequently consulted for inspiration. In particular, TeX [Knuth 1984]
was often brought up in white-board discussions.

As one of its foundations, TeX has a well-defined box model wherein all objects,
including individual glyphs, are contained in boxes. The spacing between the boxes
can be controlled through TeX commands. In addition to optimal spacing between
boxes, TeX also allows maximum and minimum spacing to be expressed. This is
referred to as glue (although Knuth suggests that springs is a better term
[Knuth&Plass 1981]).

The visual formatting model in CSS is based on a box model, and all elements,
both block-level and inline, are turned into boxes. Thus, CSS goes further than most
other style sheet languages in creating boxes. For example, DSSSL and P94 do not
use boxes for inline elements. However, CSS did not adopt TeX's glue. Although the
issue was discussed, it was decided against in order to keep the VFM simple. Glue is
very useful when breaking paragraphs into lines, but CSS leaves this problem to
implementations. CSS allows, but does not demand, inter-paragraph line-breaking
optimizations. Each box in CSS is, however, potentially richer than the boxes found
in TeX since it can contain a padding, border and margin bands. CSS also borrows
other features from TeX, including the em and ex units.

FrameMaker [FrameMaker], a desktop publishing application later acquired by
Adobe, was also consulted in the development of CSS. This author started using
FrameMaker in 1987 and among the features that were borrowed is the concept of
collapsing vertical margins.

Chapter 6: Cascading Style Sheets

219



6.7 Linking mechanism
When CSS1 became a W3C Recommendation in 1996, the current HTML
specification [HTML2 1995] did not specify how to link HTML documents to style
sheets. Formally, it was outside the scope of the CSS specification to define the
linking mechanism, but CSS1 showed a simple example of how it could be done:

<LINK REL=STYLESHEET TYPE="text/css"

HREF="http://style.com/cool" TITLE="Cool">

<STYLE TYPE="text/css">

@import url(http://style.com/basic);

H1 { color: blue }

</STYLE>

The LINK and STYLE elements were later added to HTML4 [HTML4 1997] along
with the STYLE attribute:

<H1 STYLE="color: blue; background: red">

In addition to describing how to link to style sheets from HTML documents, CSS2
also describes how XML documents and style sheets can be linked:

<?XML stylesheet type="text/css" href="bach.css"?>

Again, it is outside the scope of CSS to formally define the link and a W3C
Recommendation [XML-stylesheet 1999] was later published for this purpose.

6.8 Generated content
Generated content was introduced in CSS2. Content can be added before and after
elements in the document. This is done by setting the content property on the
:before and :after pseudo-elements. Here is a simple example adding the string
“Chapter:” before every H1 element:

H1:before {

content: "Chapter: ";

font-style: italic;

}

In the example above the generated content is also styled differently from the
element to which it is attached. By default, the generated content will inherit the
style from its host element.

The content property accepts the following type of values:

• strings: As shown in the above example

Cascading Style Sheets

220



• URL: This value points to an external resource from where the generated
content can be found;

• quotes: Four different keywords (open-quote, close-quote, no-open-quote
and no-close-quote) provide special support for quote marks (these keywords
point into a table kept by the quotes property in order to support nested
quotes);

• counters: See below.

6.8.1 Counters

Counters in CSS are initiated by the counter-reset property and incremented (or,
possibly, decremented) by the counter-increment property. Here is a simple
example which numbers the H1 and H2 elements:

H1:before {

content: "Chapter " counter(chapter) ". ";

counter-increment: chapter;

counter-reset: section;

}

H2:before {

content: counter(chapter) "." counter(section) " ";

counter-increment: section;

}

In the example above, the counter() function returns the value of the chapter and
section counters.

To support nested counters, each named counter can have a stack of open
counters. This is important for elements that can be nested inside themselves to
arbitrary depth. Figure 6 shows how a nested pair of lists (the markup is shown on
the left side) is numbered differently. The two style sheets used for numbering the
table are shown at the top.

6.9 Other formatting contexts
One main benefit of style sheets is that content can more easily be re-purposed for
various media types. Most users on the web today use some kind of visual device for
the presentations of web content (e.g., a computer screen or a printed page) while
visually impaired users use aural devices, or perhaps a braille tactile feedback device.
The range of devices used to display web content is expected to increase in the future

Chapter 6: Cascading Style Sheets

221



HTML
code

<OL>

<LI></LI>

<LI>

<OL>

<LI></LI>

<LI></LI>

<LI></LI>

</LI>

<LI></LI>

</OL>

CSS code

OL { counter-reset: item }

LI:before {

content: counter(item);

counter-increment: item;

}

OL { counter-reset: item }

LI:before {

content: counters(item, ".");

counter-increment: item;

}

Formatted
result

1

2

1

2

3

3

1

2

2.1

2.2

2.3

3

Figure 5: Two different counter styles.

and the demands on document formats and formatting systems, therefore, will
increase.

CSS makes efforts to support multiple formatting contexts, and CSS2 introduced
two key features to support multimodal access to web content:

1. Aural CSS allow style sheets to express how documents should be rendered on
an aural device. CSS is the only style sheet language reviewed in this thesis that
has aural properties. For a description of the aural CSS properties, referred to as
ACSS, see the CSS2 Recommendation [CSS2 1998] and T.V. Raman's
description [Raman 1996].

2. Media types allow style sheets to express to what kind of device a particular
stylistic rule should apply.

Cascading Style Sheets

222



6.9.1 Media types

Media types for the web were first proposed by Dave Raggett in a message to
www-talk in 1993 [Raggett 1993g]. Dave wrote in reply to Pei Wei's style sheet
proposal:

I read your style sheet proposal with great interest, and will add the "style" attribute to the
LINK tag attribute definition in the DTD.
Have you considered allowing multiple stylesheets to cover different uses? This would
mean that you could specify one style for printing and another for online use. You might
want to go further and distinguish between X windows, PC's and palmtops.

My suggestion is that the LINK element takes another attribute which specifies the
intended media, e.g.

<LINK style="http://ora.com/styles/paper_a4" media="paper/A4">

<LINK style="http://ora.com/styles/paper_B5" media="paper/B5">

<LINK style="http://ora.com/styles/xwindows" media="xwindows">

The media attribute became part of HTML4 [HTML4 1997]. HTML4 defines nine
different media descriptors: screen, tty, tv, projection, handheld, print,
braille, aural, all. CSS2, which became a W3C Recommendation in May
1998, was almost aligned with HTML4 on this topic: the only differences are that
CSS2 uses the term “media types” and adds the embossed media type.

In principle, it would have been sufficient to only use the media attribute (which
is also defined for XML documents [XML-stylesheet 1999] but having a notion of
media types inside CSS style sheets allow one style sheet to describe the rendering on
several different media types:

@media tv {

BODY { font-size: 14px }

}

@media handheld {

BODY { font-size: 10px }

}

@media print {

BODY { font-size: 12pt }

}

@media projection {

BODY { font-size: 20px }

}

Browsers that support CSS2 will interpret the above example so that the rules within
the curly brackets are applied only to the respective media types. Browsers that only

Chapter 6: Cascading Style Sheets

223



understand CSS1 style sheets will skip all rules within the curly brackets due to
forward-compatible parsing.

The choice of names for media types has been somewhat controversial. The
current names are descriptive of their intended use but do not clearly define the
range of devices to which they apply. The need for a more specific query language
was foreseen in HTML 4.0 and CSS2 and both specifications left room for future
extensions.

6.10 CSS in context
When the work on CSS was started in 1994 it faced many challenges. By then the
web had established itself as a viable medium for electronic publishing and authoring
conventions had been established. Style sheets were not part of those conventions
and many doubted whether style sheets could become part of web publishing. One
commenter wrote [Suck 1996]:

Tables in HTML might have less to do with page design and more to do with rows and
columns of numbers if it weren't for the spectacular failure of style sheets. The cascade effect
of the W3C's "Cascading Style Sheets, level 1" - unveiled a year too late last winter in
that city of dreams, Paris, France - couldn't have been better planned. By then, page
layout via tables and Netscapisms like FONT SIZE had become entrenched, making
style sheets an excellent standards-committee product - not only in its simple elegance, but
also in its superfluousness and redundancy.

In order for CSS to succeed in face of the “entrenched Netscapisms”, it needed to be
accepted by:

• browser vendors: CSS had to be easy to implement, and offer compelling
features that could make the next version of their browser compelling;

• authors: CSS had to be easy to learn in the same way HTML had been easy to
learn, and provide stylistic features that could otherwise not be achieved; and

• users: Users have the least influence of these three groups, but disapproval from
users can be problematic for new web technologies. For example, the use of
frames [HTML4 1997] has been hindered by user resistance [Nielsen 1996].

Beyond short-term popularity needed to gain acceptance, CSS also had a
longer-term ambition of rescuing HTML from turning into a visual markup
language. This aspect of CSS is not emphasized in the specification itself, but is
mentioned in Appendix E: The applicability and extensibility of CSS1 of the CSS1
specification [CSS1 1996]:

Cascading Style Sheets

224



• visual markup replacement: HTML extensions, e.g. "CENTER", "FONT" and
"SPACER", are easily replaced with CSS1 style sheets.

• nicer markup: instead of using "FONT" elements to achieve the popular small-caps
style, one declaration in the style sheet is sufficient.

For CSS to overcome the challenges and fulfill the ambitions, some key design
decisions were made:

• Create a new language. At the time CSS was first proposed to the web
community, ISO had been working on DSSSL for almost a decade. As discussed
in Chapter 4, several people argued for a scaled-down DSSSL-lite to be applied
to HTML documents. CSS took up certain ideas from from DSSSL (e.g., the
naming of properties), but it was decided to develop a new language rather than
build on DSSSL. There are several reasons for this. First, the DSSSL was work in
progress and drafts were not generally available. Second, DSSSL had not been
developed with the web in mind and did not have a way of combining style
sheets from authors and users. Third, the Scheme-based syntax was considered
to be unsuitable for non-programmers.

• Create a non-Turing-complete declarative language. Another design choice that
was controversial at the time was to develop a declarative language expressing
constraints, rather than a Turing-complete programming language. A
programming language would have been a more powerful solution, but it comes
at a cost; programs are difficult to read and expensive to maintain. Also, security
– which is always a concern on the web – suffers.

• Support progressive rendering. In order to display content to the user as quickly
as possible, browsers support progressive rendering of documents. Even if a
document has not been fully downloaded, the first part of it may be displayed.
Progressive rendering was considered an important feature that CSS should not
break. CSS therefore has no way of styling an element based on its children or
younger siblings. Also, elements cannot be reordered by a CSS style sheet and
this makes it impossible to, for example, create a table of contents. XSL
[XSL 2001] has taken a different approach by being a transformation language.

• Make CSS work with structured documents. CSS requires implementations
to be aware of the structure in the document. More specifically, contextual
selectors can match an element based on its ancestor and implementations,
therefore, are required to keep a stack of open elements. Around 1995, most
popular browsers did not keep a stack of open elements and CSS1 therefore

Chapter 6: Cascading Style Sheets

225



imposed a major change to their architectures. In retrospect, it may have been a
mistake to make contextual selectors part of the CSS1 specification.
Implementations did not support this feature in an interoperable manner until
several years later, which delayed the deployment of CSS1.

• Make CSS work with any structured markup language. Although “HTML”
appeared in the title of the initial proposal, CSS was soon generalized to work
with any structured markup language, of which SGML-based languages formed
a particularly interesting subset. The cost of making the generalization was small,
and the decision later proved important when new languages written in XML
started to appear. This has worked both ways: people are more open to use XML
given that it can be styled with CSS.

One important test of whether the above choices were correct or not is to determine
how well CSS performs according to the previously established requirements of the
web, just like other style sheet languages were evaluated in the previous chapter.
Table 21 continues where table 16 left off:

Table 21: CSS evaluated with respect to the web requirements.

Stream-based
Screen-based
properties,
values, units

Negotiation
between
conflicting
stylistic
preferences

Media-specific
style sheets

Link
styling

Robustness

CSS1
Yes, CSS1 is
stream-based

Yes, CSS has a
number of features
to support
screen-based design,
including the pixel
unit and blinking text.

Yes, CSS can
combine style
sheets from
different sources.

Yes, CSS2 supports
media-specific style
sheets.

Yes, CSS
supports
link
styling.

Yes, CSS is robust in
the sense that
documents with
partial or no style
sheets still can be
presented. In
particular, this is the
case for HTML
documents on the
web.

CSS fulfills all web requirements for a style sheet language.

6.11 Summary and conclusions
CSS is a style sheet language that has been designed for use on the web. It developed
mainly from two of the early proposals for web style sheets, namely CHSS and SSP.

Cascading Style Sheets

226



Some features from these early proposals were dropped in the course of developing
CSS from proposal stage to W3C Recommendation stage.

Compared with other mature style sheet languages, CSS has some distinct and
innovative features:

• Cascading allows several style sheets to influence the presentation of a
document.

• Pseudo-classes and pseudo-elements allow information from outside the logical
structure to influence the presentation.

• Forward-compatible parsing rules allow the language to be gracefully extended.

• Media types allow style sheets to be targeted for certain output devices.

• CSS puts more emphasis on selectors than do other languages; rather than having
expressions in the style sheet languages, the expressions are built into selectors.

This chapter has described the design of CSS. The next chapter deals with problems
experienced by CSS.

Chapter 6: Cascading Style Sheets

227





Chapter 7:

Problems in CSS

Problems in, and related to, Cascading Style Sheets are discussed in this chapter.
These problems range from simple spelling errors in the specifications, to more
complex questions as to whether CSS fulfills its intended role. The chapter is loosely
organized along an axis of complexity; the first part describes how simple errors have
been handled, and the rest discusses real and perceived problems in CSS.

The cascading mechanism plays an important – and complex – role in CSS and
one section of this chapter is dedicated to problems in the cascading mechanism.
Finally, the history of CSS implementations in browsers is outlined.

7.1 Errors in the specifications
As with any other specification, errors exist in the CSS specifications. As part of the
specification maintenance process, the editors collect errors and publish them in
accompanying errata documents. As the list of errors grows, it becomes unwieldy to
read the original specification while always having to check the list of errata.
Collapsing the two produces a new document which is easier to read.

The CSS1 specification, which was first published as a W3C Recommendation in
December 1996, was republished with all known errors corrected in January 1999.
An appendix in the new document lists the changes and sorts them into three
categories:

• Spelling and typographic mistakes (12 listed). For example, a missing comma and
right parenthesis were added.

• Errors (28 listed). For example, an invalid declaration (font-style:
small-caps) was used in an example, and a section was referred to as “4.4”
while “4.7” is correct.

• Structure and organization (6 listed). For example, the revised edition uses a new
style sheet, and the appendix describing changes has been added.

A similar effort is planned for CSS2 but since it will also incorporate semantic
changes (in addition to errors), it will most likely be given a new version number.

229



7.2 Problems with the specifications
Fixing specification errors, as described in the previous section, is not very
controversial. Identifying and correcting real and perceived problems in specifications
is much more problematic. There are often conflicting interests between designers
and implementors: a designer's solution can easily become an implementor's
problem. A personal account of the problems in the CSS specifications as perceived
by this author is given in this section.

7.2.1 Missing functionality

Authoring a technical specification is often a balancing act between functionality on
one side and implementability on the other. The functionality must be sufficiently
rich to address the needs of its users, and simple enough to be implemented
interoperably.

Traditionally, CSS has valued simplicity over functionality. For example, the
abstract of CSS1 states that it is a “simple style sheet mechanism”. This author believes
this has been a correct choice, but there are still some areas where CSS should have
offered richer functionality:

• color contrast: It is not possible to ensure a certain contrast between the text
color and the background.

• font-size: It is not possible to specify the font size as a function of the element's
width. The lack of this functionality makes it difficult to produce, for example,
slide presentations that scale from one screen size to another.

• line-height: It is not possible to set the line height to be a function of the
element width. To increase legibility, line heights should become higher when
elements grow wider.

• centering: It is not possible to center an element vertically relative to the screen.

In addition to the specific list above, there are some general areas where some extra
effort would have been worthwhile:

• user interface: CSS was primarily designed to present documents, not user
interfaces. However, many of the components needed to describe a user
interface are present, and some additional functionality could have made it
possible to also design user interfaces. Most notably, it should have been possible
to describe the presentation of navigation lists.

Cascading Style Sheets

230



• multi-column: It is not possible to describe multi-column layout where content
automatically flows from one column to another.

• headers/footers: It is not possible to describe headers and footers on pages.

Some of the above features are likely to be added in future versions of CSS, just like
CSS2 added some frequently requested features:

• roll-overs: In CSS1, it was not possible to describe presentation where
color/background of an element changed as the pointer rolled over or hovered over
an element. Instead, authors used JavaScript to achieve this effect. This
functionality was successfully added in CSS2 through the :hover
pseudo-selector.

• positioning: In CSS1, it was not possible to take elements out of the flow and
place them over other content. CSS2 added the positioning of elements. The
proposal was worked out by representatives from Microsoft and Netscape and
published as a W3C working draft [WD-positioning 1997] before being
integrated into CSS.

• page breaks: CSS1 did not address paged media, and page breaks were among the
features added in CSS2.

These additions are examples of changes in CSS due to feedback from authors and
vendors.

7.2.2 Excessive functionality

Like missing functionality, excessive functionality can be harmful to a specification.
Implementors can deem the specification to be too complex and may choose to
implement only parts of the specification or ignore it altogether. The result is poor or
missing interoperability.

The features listed below are described in the CSS specifications but, arguably,
could have been left out without significant loss. The features are relatively complex
to implement and it has taken a long time to achieve interoperability.

• first-line and first-letter: The first-line and first-letter pseudo-elements make it
possible to style content based on the layout of the page rather than the structure
of the document. These kinds of features are often referred to as being
layout-driven. CSS1 included these pseudo-elements to be able to offer authors
some features they could otherwise not achieve. However, the cost of

Chapter 7: Problems in CSS

231



implementing these features far outweighted the benefits of the visual effects
they provided.

• box model: The box model of CSS includes padding, border and margin areas
around all elements. For block-level elements, this makes sense. For inline
elements, however, having three areas is excessive; having a padding area would
be sufficient.

• contextual selectors: Contextual selector allow elements to be selected based on
their place in the document's tree structure. Supporting contextual selector
made it possible to, e.g., remove borders from images that where hyperlinks.
This was perceived to be a requirements as one of Netscape's extensions could
express it. However, supporting contextual selectors is complex unless
implementations already kept a stack of open elements. Typically, this was not
the case and contextual selectors were not interoperably supported until several
years after the publication of CSS1. As such, contextual selectors delayed the
deployment of CSS1. On the other hand, by having contextual selectors, CSS
contributed to the understanding of HTML as a structured markup language.

It may also be argued that other parts of CSS2 are excessive since they have not been
widely implemented. These parts include:

• text-shadow: This property was added in CSS2 to generate shadow effects on
text to deter authors from using images instead of text. The property is complex
to implement and can only replace a limited set of the visual effects designers
want to apply to text.

• marks: In high-quality printing, cross marks are often printed in the page
margins to align sheets of paper, and cut marks indicate where sheets should be
cut. The marks property was added to CSS2 to toggle on and off the printing of
marks. Turning these marks on and off may also be handled in the application's
print dialog box.

• markers: Markers are typically used with list-items to mark the beginning of a
new item. CSS1 allowed the type of marker to be described (for example,
whether the list-item should be marked with a circle or a number). CSS2 offers a
richer, more complex way of describing markers through pseudo-elements.

• downloadable fonts: Fonts are essential resources when presenting documents.
Typical desktop computers have around 20 font families available and handheld
devices have fewer. Being able to download fonts from the web has the potential

Cascading Style Sheets

232



of increasing the richness of presentations. CSS2 offers a mechanism for
describing and selecting fonts from the web. However, the feature is not much
used. Two major reasons for this might be: First, there is no universal font
format which all vendors support; and second, font designer want to be
compensated for their work and no suitable payment mechanism is available.

• the font-size-adjust property: This property addresses a problem which
can occur when one font family is substituted for another. The legibility of the
two fonts can vary considerably and the x-height value is often more important
than the font size. The purpose of the font-size-property is for designers to
indicate that the x-height of the font should be preserved rather than the font
size.

Although none of the features listed above have been widely implemented, this
author argues that all of them describe useful functionality in a sensible manner, and
that the functionality will be used when/if implemented.

7.2.3 Poor design

Missing functionality can be added, and excessive functionality can be removed.
Poor design, however, is often more difficult to fix at a later stage. Three design
issues where CSS has been criticized for poor design are considered below.

7.2.3.1 Overloaded properties

CSS1 tried to be a compact language to enable implementations on small devices. In
a few areas, however, too much functionality was compressed into a single property
in order to save space. This is the case for the white-space property which
describes both whether space characters should be collapsed, and whether line breaks
should be honored. These are two separate issues and the property should, therefore,
have been split into two properties. Similarly, the text-decoration property
encodes several unrelated values. For example, it describes whether an element
should be underlined and whether it should be blinking. As result, it is not possible
to turn off blinking of elements without also affecting underlining.

7.2.3.2 Positioning

In January 1997, two months after CSS1 became a W3C Recommendation, the first
Working Draft of a document called Positioning HTML Elements with Cascading Style
Sheets was published by W3C. Listing authors from both Netscape and Microsoft,

Chapter 7: Problems in CSS

233



the document is a rare example of technical collaboration between the two
competing companies. The proposal introduced several new CSS properties to
“allow authors to exercise greater accuracy in page description and layout”. It is noteworthy
that the description only refers to authors – not users – and thereby disregards
cascading. Indeed, the positioning properties are not well suited for cascading (see
the positioning problem below).

Another problem with the initial positioning draft is the lack of counterpart
properties to the proposed top and left properties. This indicates a certain slant
towards western writing systems which typically are written from left to right and
top to bottom. When positioning was integrated into CSS2, the right and bottom

properties were later added to ensure that positioning can be used equally well with
other writing systems.

7.2.3.3 XML syntax

One common criticism of CSS is that it uses its own syntax rather than being written
in XML. By using the XML syntax, it is argued, it would be easier to parse CSS and
style sheets could be read and written by standard XML tools. Indeed, the choice of
syntax is an important one and if the arguments for using the XML syntax, as stated
above, are true, CSS could have benefited from using XML. There are, however,
several reasons why CSS is not written in XML.

First, when CSS was developed, XML was not available. XML became a W3C
Recommendation in February 1998 [XML 1998], and switching syntax at that point
would have incurred a considerable cost. SGML, however, was available, and some
people argued that a SGML-based syntax should be used [Gramlich 1996]:

We do not know how other vendors feel, but we are getting tired of having to implement a
new parser every time something new comes out of W3C (PICS, PEP, CSS,
HTTP-NG, etc.) It is clear that CSS has lavished a great deal of attention on coming up
with an extremely textually compact way of representing style sheets. Unfortunately, we
have little confidence that all vendors will properly implement the CSS parser and this will
lead to serious style sheet interoperability problems. (If you do not agree, just think of how
long it has taken to get most web clients to parse the HTML subset of SGML reasonably
properly.) We have additional concerns about burdening the content providers, with yet
another syntax in order to express style sheets in; SGML has a pretty awful syntax, but
content providers have already mastered the ability to generate it.

In the end, human read- and writability was valued higher than reusability of parsers.
The CSS syntax is optimized for writing style sheets, and it is doubtful that there is

Cascading Style Sheets

234



an XML encoding system that is more friendly to humans. Also, writing a CSS
parser is relatively simple.

The most important benefit from writing CSS in XML would probably have
been an increased acceptance in the XML community.

7.3 Cascading problems
In the previous chapter, the cascading mechanism in CSS was described in some
detail at a technical level. The cascading mechanism fulfills two important
requirements for CSS. First, it allows both authors and users to influence the
presentation of documents. Second, it provides fallback values when only partial style
sheets are supplied, or when style sheets are missing. Still, the cascading mechanism
has many associated problems. They are discussed in this section. Towards the end,
some solutions are proposed.

7.3.1 Self-inflicted problems

The problems listed below are due to CSS' own design.

• The style problem: Combining different styles often leads to poor aesthetic
results. Examples from architecture abound: erecting a building in a different
style than the surrounding neighborhood will rarely add “creative contrast”, and
most often look out-of-place. Intuitively, combining different style sheets has
some of the same problems associated with it.

• The selector abundance problem: The number and type of selectors available are
key style sheets since they provide the hooks onto which the style rules are
attached. To create rich presentations, a powerful set of selectors is beneficial.
For example, if only type selectors are available, all P elements will have the same
style. More advanced selectors make it possible to give different style to different
P elements depending on their place in the document structure. CSS2 provides a
rich set of selectors for this purpose but there is an intrinsic conflict between
richness of selectors and cascading. In order to set the style on all P elements, the
challenger will need either to write a large set of selectors or consistently increase
the weight of its style rule.

• The property abundance problem: Just like the richness of selectors results in a
problem for cascading, properties also have an abundance problem. In particular,
the visual distance between elements can be set through several different types of

Chapter 7: Problems in CSS

235



properties: padding, borders and margins. Also, the distance can be affected by
the display, float and position property. In order for the challenger to
ensure a certain distance, a set of properties must, therefore, be set. Consider this
example:

P {

display: block;

float: none;

position: static;

margin: 1em;

border: 0;

padding: 0;

}

The above example sets the vertical distance between P elements to be one em.
The shorthand syntax used to set margin, border and paddings alleviates the
problem to some extent.

• The grouping problem: A common request from web authors starting to use CSS
is for a way of grouping rules together so that if one rule fails, the other rules are
not applied. For example, a style sheet may set the foreground color white and
the background color to black. If one of these rules is overridden by a rule
introduced by cascading, the style sheet author would like to specify that the
other rule should also fail. CSS offers no such mechanism; each rule in CSS is set
independently from the other rules.

• The island problem: The cascading mechanism is able to combine several style
sheets, but there is no general mechanism for rules in one style sheet to be based
on rules in other style sheets. For example, it is not possible to write a style sheet
that increases the contrast between foreground and background colors while still
using the hues defined in another style sheet. Using relative length units, style
rules in one style sheet can be relative to style rules in other style sheets. For
example, the font size can be set in one style sheet and the width of the element
can be set to 10em in another style sheet.

• The positive problem: Rules in CSS can only express positive statements. For
example, a rule can say that an element should be red, but not that the element
should not be blue. In certain situations it would be beneficial to describe that
particular values, or combination of values are not acceptable. For example,
green text on a red background is difficult to read for people who are color blind.
In some situations, CSS provides a way to list alternate values. The

Cascading Style Sheets

236



comma-separated list of alternate font families in order of preference is an
example.
The positive problem would not have been a problem if it was possible to select
elements based on their stylistic values. Consider this imaginary example where
all elements with a green color and a red background are selected:

*[color=green][background=red] {

background: white

}

While the above example may seem simple, it raises a number of difficult issues.
For example, what is the definition of “red”?

• The positioning problem: Some properties do not cascade well. The properties
that were introduced to support the positioning of elements (position, left, right,
top, bottom, z-index) are typically set on single elements rather than groups of
elements. This makes it complicated for users to write style sheets that cascade
gracefully with author style sheets.

7.3.2 Problems resulting from markup

• The generic markup problem: The HTML specifications define a set of elements
which are allowed in HTML documents. HTML documents can be displayed in
browsers since the browser vendors all have implemented the HTML
specifications (with varying success). The common tag set is also a foundation for
cascading since the vocabulary of elements is known. A designer can write an
alternate style sheet by using the elements and attributes of HTML in the
selectors.
In contrast, the elements and attributes of a document using generic markup
are, by definition, not known by anyone but the author of the document. While
the markup may still serve a useful role for the author, it is impossible for others
to write style sheets to display the document. Only the universal selector (which
selects all elements) and the pseudo-selectors (e.g. :first-line and :visited)
make sense to use with an unknown tag set, and this is not enough to write a
sensible style sheet.

• The class problem: The class attribute in HTML makes it possible to write
style sheets with which no one can ever cascade. The CSS1 specification
contains a warning against the use of class attributes:

Chapter 7: Problems in CSS

237



CSS gives so much power to the CLASS attribute, that in many cases it doesn't
even matter what HTML element the class is set on – you can make any element
emulate almost any other. Relying on this power is not recommended, since it
removes the level of structure that has a universal meaning (HTML elements). A
structure based on CLASS is only useful within a restricted domain, where the
meaning of a class has been mutually agreed upon.

The class problem is a specific case of the generic markup problem described
above.

• The presentational markup problem: Many web pages use tables for layout
purposes. By placing content into table cells, authors lay out their content in a
two-dimensional grid. To some extent, tables are scalable horizontally and
vertically (e.g., the widths and height of columns and rows expand and contract
based on the content in the table), but the two-dimensional layout is rigid. It is
possible for CSS to flatten tables into block-level and inline elements, but the
intended semantics of the spatial relationship is lost, and real tables (as opposed to
tables for layout purposes) are also flattened in the process.

7.3.3 User interface problems

• The user interface problem: Historically, browsers have provided users with very
limited means of setting presentational preferences. Typical choices include the
underlining and coloring of links. At a time when most of the presentation was
hardcoded into the browser, this limited choice could be explained. With the
arrival of CSS, however, most aspects of the presentation are configurable. Still,
the user interface of popular browsers has not changed much and no browser
provides a user GUI for describing anything similar to what CSS can express.
Also, Microsoft's Internet Explorer for Windows (a.k.a. WinIE, which is used by
most web users) does not provide a way of applying alternate style sheets. Most
browsers do, however, provide a way to point to a file containing the user
interface.

• The GUI problem: One reason for the user interface problem may be the that it
is not intuitively clear how to edit a CSS style sheet through a GUI. Typically,
GUIs are used to empower the user with control of all configurable values. In a
cascading context, however, it is in the best interest of the user not to set all
values and instead leave it to inheritance or other style sheets to determine the
value. It is possible to represent these kinds of values through settings such as
“auto” or “defer”, but it is not something that GUIs have done in the past.

Cascading Style Sheets

238



7.3.4 Complexity problems

• the site abundance problem: The web links thousands of servers and millions of
pages. It is impossible to write one user style sheet that cascades well with all
author style sheets on the web. This problem could have been addressed if
browsers allowed site-specific user style sheets, but this has not been the case yet.

• the document debugger problem: Programmers use debuggers to find why a certain
value is set at a certain point in a program. Similarly, a document debugger is needed
to find out why a certain element/property combination has a certain style. This
must be known in order to write a challenger rule to change the value.
Document debuggers have been written, but are not offered by mainstream
browsers.

7.4 Problems in implementations
This thesis focuses on the design of CSS and other style sheet languages, and it is
beyond its scope to analyze the level of CSS support in various browsers. Still, it
must be mentioned that, from the point of view of web authors, the most pressing
problem in the early years of CSS was the quality of CSS support in browsers. Jeffrey
Zeldman describes the situation around 1998 [Zeldman 2003]:

If Netscape 4 ignored CSS rules applied to the <body> element and added random
amounts of whitespace to every structural element on your page, and if IE4 got <body>
right but bungled padding, what kind of CSS was safe to write? Some developers chose
not to write CSS at all. Others wrote one style sheet to compensate for IE4's flaws and a
different style sheet to compensate for the blunders of Netscape 4.

The quote correctly describes the difficult situation in which web authors found
themselves: only a small subset of CSS was interoperably implemented between
Netscape4 and WinIE [Wilson 2003a]. The situation gradually changed as the use of
Netscape4 declined and the CSS support in Internet Explorer improved
[WASP 2004]:

The W3C invented Cascading Style Sheets (CSS) in 1996 to increase the
presentational sophistication and the accessibility of websites, and to eliminate the
browser-specific markup that threatened to fragment the emerging web. In 1997, some
browsers began to support parts of CSS-1, but the standard did not become truly usable
until 2001.

As suggested in the quote above, 2001 was a turning point for CSS. That year
Microsoft released Internet Explorer 6.0 which, although still incomplete and buggy

Chapter 7: Problems in CSS

239

http://www.webstandards.org/learn/resources/css/


[Wilson 2003b], has usable support for CSS. By that time several other browsers
with excellent support for CSS had been released, including Opera, Mozilla, and
Internet Explorer for MacOS [Wilson 2003a].

One reason for the improvement in the quality of CSS implementation is
probably the W3C CSS1 Test Suite. The test suite was first published in 1998, 18
months after CSS1 became a W3C Recommendation [W3C 2004]. If the test suite
had been available at an earlier stage, the turning point for CSS might have appeared
earlier.

None of the a browsers have been able to compete with WinIE in terms of
numbers of users, and WinIE has, therefore, in effect defined what subset of CSS
authors can use. WinIE's limited support for CSS, combined with a de facto
monopoly in web browsers, is currently the biggest problem for CSS deployment on
the web.

7.5 Summary and conclusions
CSS has seen many problems since CSS1 was published as a W3C Recommendation
in 1996. The problems can be divided into three groups: problems in the
specifications, problems in the cascading mechanism, and problems in the
implementation.

The CSS specification has three kinds of problems: errors, missing functionality
and excessive functionality. The errors have been corrected by the editors who have
published lists of errata and revised Recommendations. Also, test suites have been
made available for implementors. The views concerning what is excessive and what
functionality is missing are subjective, and this author's views have been described.

Cascading is an ambitious mechanism that has failed to provide users an equal
right to influence document presentations, while succeeding in allowing partial style
sheets to be combined. I believe there are no fundamental problems in CSS that
would have made the introduction of style sheets on the web any easier.

The first CSS implementations in major browsers were incomplete and prone to
errors. That led to a situation where large parts of CSS could not be used as long as
particular browsers were used in significant numbers. By now, CSS is a
well-understood style sheet language with several excellent implementations. It is
still, however, not possible to fully exploit the CSS language due to the relatively
poor CSS support in Microsoft's Internet Explorer.

Cascading Style Sheets

240



The two previous chapters have described and evaluated the CSS design. The
next two chapters look to the future. First a novel, non-stylistic use of CSS is
described. Thereafter, possible future research is outlined.

Chapter 7: Problems in CSS

241





Chapter 8:

CSS for small screens

Most web pages are written for, and tested exclusively on, desktop computers with
large color monitors. Mobile wireless devices typically have much smaller screens
and presenting typical web pages on these units is a challenge. This chapter describes
how CSS can be used to overcome the challenge. The solution is based on cascading:
by enforcing a specially designed browser style sheet on all documents, the rendering
of incoming documents is adjusted based on the constraints of the user's device.

Daniel Glazman has developed a the feel-like-a-cellphone stylesheet (referred to as
FLACS in this thesis) which, when installed as the browser's default style sheet, will
limit the width of documents so that users only have to scroll vertically to see the
whole documents [Glazman 2002]. The development of the style sheet was inspired
by Opera Software's announcement of Small-Screen Rendering (SSR). SSR has been
partially based on style sheets in the past, but also has components that cannot be
described by CSS. FLACS, being a CSS-only solution, is therefore more suitable for
review in this chapter.

FLACS is a relatively simple style sheet. It contains only 22 declarations and set
values on 16 properties. Still, it is able to reformat many documents to be suitable for
presentation on a small screen. The style sheet fragments in this chapter are copied
from FLACS, but some of theme have been simplified slightly and comments in the
style sheet have been removed.

8.1 The problem
HTML is a simple markup language where the tags describe the logical roles of the
content (e.g., paragraphs, headings) rather than how the content is presented (e.g.,
fonts, colors). When tables were introduced in HTML 3.2 they were meant to
represent simple rows and columns of numbers and text within documents – just
like tables have been used in traditional documents. However, authors soon
discovered that tables could be used for layout purposes. Instead of putting tables
inside a document, the whole document was put inside a table. For example, the

243



page could consist of a menu on the left side, an ad banner on the top, and a side bar
on the right, and each component would be a cell in the table.

Pages that use tables for layout purposes are often set to a fixed width, typically
around 600 pixels. This width fits well on a desktop computer, but not on smaller
web devices. There are several ways to make content fit on smaller screens.

First, some browsers can zoom pages in and out. Zooming is a powerful way of
getting the overview of complex web pages while also being able to magnify certain
parts of the page. It is often used by visually impaired users to reach legible font sizes.
Zooming out allows web pages written for desktop computers to be shown on small
screens, but little content is legible when the page is zoomed out. The use of
zooming typically requires the user to scroll extensively both horizontally and
vertically.

Second, one can reformat content to better fit on small devices. Reformatting
requires more processing of the content than does zooming; where zooming only
changes the size of the elements on the screen while preserving the spatial
relationships between the elements, reformatting means that the page is laid out in a
new way that changes the spatial relationships between elements. Reformatting can
also satisfy a commonly encountered requirement on mobile phones: there should be
no horizontal scrolling.

This chapter describes a strategy for reformatting content based on four main
components:

• cascading: The browser applies a browser style sheet to the document;

• linearization: The browser linearizes the document presentation by turning table
cells and and positioned elements into normal block-level elements;

• element removal: The browser removes certain elements unfit for display on
small screens; and

• element resizing: All elements are given a maximum width equal to the screen
size, and are scaled down if necessary.

The rest of this chapter describes the reformatting process in some detail. A browser
that reformats documents according to this process is said to be in small-screen mode.

8.1.1 Cascading

As discussed in Chapter 6, CSS style sheets can have three different origins: author,
user and browser. Normally, the role of the browser's default style is only to provide

Cascading Style Sheets

244



fallback values. In small-screen mode, however, the browser's style sheet plays a
more active role. Consider this fragment from FLACS:

body {

width: 176px ! important;

padding: 3px ! important;

margin: auto ! important;

border: thick black solid ! important;

}

The first declaration sets the BODY element to a fixed width (176px is a common
screen width on mobile phones). The declaration is marked as important to enforce
the width even if the author or user style sheet has set another width. Similarly, a
certain padding, margin and border is enforced on the BODY element.

FLACS, however, does not fully describe the presentation of the document. For
example, colors and fonts are not set in FLACS (with the exception of font sizes) and
author style sheets are therefore partially honored. FLACS thereby makes active use
of cascading.

8.1.2 Linearization

HTML tables consist of rows of cells that are aligned horizontally into columns
when presented. Most often, the organization of the content into a table is purely a
visual effect to achieve a grid type of layout. On a small device there is not enough
room for a grid layout, and the table can be reorganized into block-level elements. In
small-screen mode, all table cells in a row are combined to form a block-level
element, that is, each row is turned into a block-level element, and all block-level
elements created from a table are presented on top of each other. This is easily
expressed in CSS:

table, tr, td, th {

display: block ! important;

}

A similar technique is used for absolutely-positioned elements. Positioned elements
are normally taken out of the normal text flow and positioned somewhere else on
the screen. On small screens this is problematic since many of the positioned
elements will be placed outside the limited viewing area. Therefore positioning is
turned off:

Chapter 8: CSS for small screens

245



* {

position: static ! important;

}

Finally, the floating of elements is turned off since the screen is not wide enough to
show elements next to each other:

* {

float: none ! important;

}

8.1.3 Element removal

Some elements are not suitable for display on small screens. There are three main
types of elements that are removed by FLACS: small images, advertisements, and
elements using certain plug-ins.

Small images that only serve ornamental or stylistic roles can be selected based on
their size:

img[width="1"], img[height="1"] {

display: none ! important;

}

The example above removes images with a declared width or height of one pixel.
Images that have not declared their size through attributes will not be selected.

Advertisements are problematic on small screens since they take up valuable
screen space and bandwidth. Therefore, FLACS tries to remove advertisements from
the document presentation. There is no way to know which elements contain
advertisements in HTML. However, certain conventions have been established by
advertisers and these conventions can be used to select and remove advertisements.
For example, a typical size for advertisements is 468 by 600 pixels. FLACS removes
images of this size through a simple rule:

img[width="468"], img[height="600"] {

display: none ! important;

}

Also, the iframe element is most often used for advertisements and can therefore be
removed:

iframe {

display : none ! important;

}

Cascading Style Sheets

246



Finally, FLACS removes embed elements which point to a certain type of content:

embed[type*="shockwave"] {

display : none ! important;

}

The selector in use in the above example is proposed for CSS3
[WD-CSS3-selectors].

8.1.4 Element resizing

To avoid horizontal scrolling, elements that are wider than the available screen size
must be scaled. CSS2 has a property to describe the maximum width of elements:

* {

max-width: 176px ! important;

}

The above statement sets the maximum width of all elements to 176 pixels. Images
wider than 176 pixels will then be scaled down to 176 pixels while smaller images
will remain unchanged.

8.2 Summary and conclusions
The strategy for reformatting content for small screens described in this chapter uses
two aspects of CSS. First, cascading is used to enforce a browser style sheet over
author and user style sheets. Second, CSS properties such as display, position,
float and max-width are used to describe rendering in small-screen mode. The
result is a browser that can display most web pages on a small screen.

Chapter 8: CSS for small screens

247





Chapter 9:

Cascading links

The previous chapter described how CSS can be used to describe a specific visual
presentation of documents. This chapter will describe a non-stylistic use of CSS.

The purpose of style sheets is to describe the presentation of documents. Style
sheet languages do this by associating stylistic properties and values with elements in
the document. However, there is nothing style-specific in the syntax and value
propagation mechanisms of style sheet languages, and style sheets can equally well be
used to associate other types of properties and values with elements. As such, style
sheet languages can be considered a generic mechanism for associating
property/value pairs with elements. Cascading links, or CLINK for short, uses CSS
as a mechanism for describing links in documents.

9.1 Background
One type of information which is crucial on the web is links. In HTML, links are
found in certain attributes (e.g., the href attribute on the a element) which browser
must know. Generic XML has no such attributes, and the question of where to put,
and how to find, hyperlinks arises. XLink [XLink 2001] was developed to solve this
problem. XLink defines a set of new attributes which represent links of different
kinds. Here is a simple XLink example:

<my:crossReference xlink:href="students.xml">

Current List of Students

</my:crossReference>

In the above example, the xlink:href turns the element into a hyperlink. XLink
defines a set of attributes that must be used in order to establish the links.

The W3C HTML Working Group resisted switching over to XLink. The main
argument against using XLink was that all documents had to be changed. Instead, it
was argued, a solution that describes links rather than being links would be beneficial
[Pemberton 2000]:

249



Another important semantic of a web page, perhaps the most important after presentation,
is linking. What is needed is a sort of 'Linking Sheets for the Web': a way to tell generic
XML application which attributes represent a link, and how to interpret them.

HLink [WD-hlink] was later developed to address the needs of XHTML.
Two of the style sheet language proposals discussed in Chapter 4 discuss how

links can be described in “sheets”. First, SSFP proposes the click property to
indicate where to find URLs in a document. Two ways of describing the behavior of
HTML's href attribute on the A element are suggested in the proposal:

(style a (click (follow (attval 'href))))

(style a (click 'follow-URL 'HREF))

Second, SSP proposes a way for style sheets to identify anchors and targets in a
document:

*A.anchor: !HREF

*A.target: !NAME

CLink follows in the same pattern as SSFP and SSP; it provides a way for style sheets
to describe links in a document.

9.2 The CLink proposal
CLink was first proposed in May 2000 [CLink 2000a], with an updated proposal
November that [CLink 2000b]. The proposal was not announced publically, at that
time, but discussed within W3C forums. Opera Software [Opera] has added
experimental support for CLink, and the examples in this chapter use the syntax
supported by Opera.

CLink has two basic functions. First, an element can be marked as a source anchor
so that the browser can make it a clickable hyperlink. Second, elements can be
marked as replaced so that the content of the element is replaced by an image, for
example, when the document is presented to a user.

9.2.1 Making hyperlinks

CLink uses two properties to mark a hyperlink. The -o-link-source property
identifies the URL of the anchor, while the -o-link property turns an element into
a source anchor. (The -o prefix of the CLink properties marks the properties as
experimental.) Typically, both properties are used on the same elements:

Cascading Style Sheets

250



A {

-o-link-source: attr(HREF);

-o-link: current;

}

In the example above, the first declaration states that the HREF attribute of the A
element contains the URL of the anchor. The effect of the declaration is that,
whenever an A element is encountered, the URL is copied into a special variable
kept by the browser. The second declaration states that the A element is to become a
source anchor and that the current value of the special variable will be the URL of the
anchor.

The two-step approach to defining hyperlinks may seem unnecessarily
complicated. In the case of HTML's A element (which is what the above example
describes), a single-step approach would have achieved the goal. However, in some
languages the URL of the anchor is not defined on the same element as the source
anchor so the simplest solution will not always work. Consider this example from
WML [WML]:

<anchor>follow me

<go href="destination"/>

</anchor>

The markup above should have the same effect as this HTML markup:

<a href="destination">follow me</a>

WML's anchor element poses a challenge since the URL of the anchor is not found
in an attribute of the element itself, but rather in an attribute of a child element
(namely go). Clink can describe this behavior with:

go { -o-link-source: attr(href) }

anchor { -o-link: next }

The first rule states that the href attribute of the go element contains the URL of
the anchor. The second rule turns the anchor element into a source anchor, and also
states that the URL of the anchor will be found in the next assignment of the link
variable (next and current are the only values on the -o-link property).

9.2.2 Replaced elements

In HTML, images and other non-textual content are stored outside the document.
For example, the IMG element is part of the document structure, but the element
only holds a link to the image data. When the document is presented to the user, the

Chapter 9: Cascading links

251



image data are automatically fetched and the IMG element is replaced by the decoded
image. As such, the IMG element is an example of a replaced element. To achieve
the same functionality in documents written in arbitrary XML, there must be a way
to declare elements as replaced. In Clink, the -o-replace property fulfills this role.
Consider the following:

picture {

-o-replace: attr(source)

}

In the above example, the fictional picture element is set to be replaced and the
replaced content will be fetched from a URL found on the source attribute.

9.3 Summary and conclusions
Clink is an example of a non-stylistic use of CSS. Instead of stylistic properties,
Clink distributes properties that describe linking information onto elements. Thus,
Clink highlights the fact that out of six required components of a style sheet language
(syntax, selectors, properties, values and units, value propagation mechanism, and
formatting model), only one (the formatting model) necessarily has anything to do
with style.

A range of other non-stylistic uses of style sheets can be imagined, and only a few
of these have been explored.

Cascading Style Sheets

252



Chapter 10:

Future research

Style sheets form an interesting area of research. In addition to intellectual
challenges, which most research domains can offer, this author thinks there are two
reasons why the study of style sheets is attractive. First, as Marden and Munson
write, style sheets have been “terribly underresearched” in the past
[Marden&Munson 1999]. This makes it possible for young researchers to contribute
without first spending years studying what others have done. Second, the web
contains an increasing amount of information. In order to make this information
human readable, style sheets are necessary. Therefore, in the foreseeable future, style
sheets are likely to influence the presentation of a significant part of human
information.

This section lists questions that, hopefully, future research will answer. Some of
the questions are easier to answer than others. To avoid doing research on future
research, there is no farther classifications of the questions.

• Is there an ideal level of abstraction for markup languages? Users want beautiful
presentations, but also searchable documents. Some users have special needs and
depend on device-independent markup languages to access information.
Authors seem to have limited desire to add more semantics to their documents,
but would surely like to see their content presented on a range of devices.
Conflicting constraints like these indicate that there is no single ideal level of
abstraction, but that document formats for the web need to cover a range of steps
on the ladder of abstraction. How should this influence the design of future
markup languages?

• Can style sheets describe presentation in domains other than electronic
documents? Just like markup languages can be used for more than markup
(XML is a case in point), style sheet languages may also be for more than
document presentation. For example, can style sheets describe architecture?
Here is a simplistic example:

253



Norway Oslo Drammensvn 97 b {

floors: 3;

color: #FCA;

roof: mansard;

}

• What other non-stylistic uses are there for style sheets? How the CSS syntax and
value propagation mechanism was used to distribute non-stylistic property values
to elements was discussed in Chapter 9, and Daniel Glazman has developed a
transformation language using a CSS-based syntax [Glazman 1997]. Most likely,
there are other interesting uses of the same mechanisms. For example, one could
easily think of using CSS to describe schema-like information about elements:

p {

nestable: no;

end-tag: optional;

legal-inside: body, div;

attributes: href, style, class;

}

• How are style sheets used on the web today? The use of style sheets in word
processing applications has been researched [Sørgaard 1996], but the use of style
sheets on the web has not been thoroughly investigated. What features of CSS
are being used? Are style sheets only used to encode what HTML's FONT
element already represents in a document, or are sites using CSS to fully describe
their design?

• Can cascading be used to resolve other conflicts between users, programs and
authors? For example, can cascading be used to determine GUI settings of an
application? In many ways it is similar to document presentation; the author
(programmer) would like to suggest default settings, but the user should be given
the final word. Could CSS be used to express user preferences for applications?

• Can glyph shapes be taken into consideration by style sheet languages?
Typography in advertising and other artistic expressions often aligns glyphs based
on their shapes. No known style sheet language has attempted to describe
typography at this level of detail. How should it be done?

• Can HTML/CSS be used as a storage format for office documents? Microsoft's
suite of Office applications are typically used to author documents (including
letters, contracts, and manuscripts), spread sheets, and projected presentations.
HTML and CSS can probably express most documents. Also, by using the

Cascading Style Sheets

254



projection feature of CSS2, many projected presentations can be described.
Tables in HTML can be used to express spread sheets, but are not able to encode
relationships between cells. Can the missing functionality be added so that, for
example, OpenOffice [OpenOffice] can use HTML/CSS as the native storage
format?

• To what extent have browser vendors used style sheets in their marketing
campaigns? How do the marketing efforts correlate with actual levels of support?

• Can some of the problems described in Chapter 7 be fixed?

• XSL has not been thoroughly reviewed in this thesis. How does XSL compare
with the languages and proposals discussed in this thesis?

• Should future markup languages be designed around CSS? In the past, style sheet
languages have trailed markup languages, and the former, therefore, had to be
designed to work with markup languages. In the future, the situation may be
turned around; markup languages may be designed so that their content can
easily be presented through deployed style sheet languages. For example,
Chavchanidze [Chavchanidze 2004] has done some interesting work on how to
represent mathematical notation in a CSS-friendly XML-based language.

• In 1993, it was argued that HTML should be “frozen” and that a new markup
language for the web should be developed [Dougherty 1993]. What has the web
gained and lost by evolving a backwards-compatible HTML rather than freezing
it?
The style sheet languages and proposals discussed in this thesis all follow a similar
pattern: style sheets express rules that associate stylistic properties and values with
structural elements in a document. Indeed, this is the proposed definition of a
style sheet in electronic publishing. Are there other models that would serve the
goals of content reuse and device independence better? For example, would a
template-based approach where textual content is imported into tables be
feasible? The tables and associated markup would be presentational, but the
imported resources could be reused in other contexts as well.

• Is it possible to use extension mechanisms offered by browsers to fix their
support for style sheet languages? In particular, is it possible to “extend”
Microsoft's Internet Explorer so that it renders CSS correctly?

• Two of the languages reviewed (P94, PSL96) are explicitly based on constraints.
Does it make sense to retrofit constraints into CSS? This approach was proposed

Chapter 10: Future research

255



by [Badros et al. 1999]. To some extent it can be argued that CSS already is built
on constraints, but can the language be improved further by making constraints
more visible for designers?

• Is it possible to use constraints to mathematically verify formatting models? This
approach was proposed by [Michalowski 1998]. For example, can one describe
the CSS visual formatting model as a constraint-based system to discover
inconsistencies and other errors of design?

• Knowing what we know today, what would the ideal style sheet language look
like?

10.1 Summary and conclusions
Style sheets, an interesting area of study, have much room left for future research.
This chapter has posed some questions which may be of interest to researchers in the
future.

Cascading Style Sheets

256



Chapter 11:

Conclusions

This chapter describes, in a compressed form, what I believe can be learnt from this
thesis.

The hypothesis of this thesis is that the web calls for different style sheet languages
than does traditional electronic publishing. I believe it has been shown that the
hypothesis is true. The introduction outlined the web's unique characteristics as a
publishing environment, and the these characteristics were formulated as
requirements for a web style sheet language in Chapter 5 (Web requirements). None
of the style sheet languages developed before the web fulfill – or are close to fulfilling
– the web's requirements and, therefore, it seems reasonable to conclude that the
hypothesis is correct.

One could argue that even though a different language is required, it was not
necessary to develop a new language. A modified version of an existing language
could have been sufficient. This approach was taken by DSSSL Lite as discussed in
Chapter 4. In retrospect, I think a modified version of FOSI could have been
successfully adapted for use on the web, but it would not have significant advantages
over CSS. On the contrary, CSS – by being designed specifically for the web while
also learning from style sheets languages such as DSSSL – is able to address the
requirements of the web.

Further, the thesis describes five important contributions to the field of study: the
dissemination of style sheet languages into six required components; the description
of web requirements for style sheet languages; the comparative analysis of the
different style sheet languages and proposals; the ladder of abstraction; and CSS itself.

• In order to compare different style sheet languages, it is necessary to establish
common criteria by which the languages will be judged. Chapter 3 describes a
set of criteria for style sheet languages with six required components: syntax,
selectors, properties, values and units, a value propagation mechanism, and a
formatting model.

• This thesis provides the first comprehensive comparative analysis of style sheet
languages. Such languages developed before the web, and style sheet proposals

257



developed for the web, have been evaluated for each of the six required
components of a style sheet language. Also, all languages and proposals have been
evaluated against a set of web requirements.

• The web adds new requirements for style sheet languages. Among the
requirements described in this thesis are the need to be stream-based, and to
support screen-centric designs.

• The ladder of abstraction is proposed as a method for evaluating electronic
document formats. How high a certain document format is on the ladder will
determine the complexity of formatting the document for presentation. Since
the formatting of a document is specified by a style sheet, the abstraction level of
target documents is crucial for the success of a style sheet language. Also, the
ladder of abstraction is helpful when evaluating the accessibility of various
document formats.
When designing new document formats, therefore, one should always consider
how documents written in the new format will be presented. Defining a new
syntax for a document format is quite simple compared with the task of
designing a presentation mechanism for the document format.

• CSS has some unique and innovative features, including cascading,
pseudo-elements and pseudo-classes, forward-compatible parsing, and media
types. By now, CSS has established itself as one of the fundamental specifications
on the web and most web sites are using it. As such, the efforts to create a style
sheet language for the web have been successful. Also, CSS has partially fulfilled
its ambition of maintaining HTML as a structured markup language and
ensuring that documents can be styled by users. Alas, due to limited support for
CSS in the dominant browser on the web, CSS cannot yet be used in full.

In addition to the main contributions listed above, this author has – during the
course of the work – come to believe the following to be true:

• In the past, structured documents have suffered from a lack of style sheet
languages. While proponents of structured documents, SGML in particular,
argued their case and further developed ways to create structured documents,
little attention was paid to the presentation of documents.

• HTML has the right level of abstraction for a general-purpose markup language:
it is high enough on the ladder of abstraction to support presentation on a wide
range of devices, and low enough for people to grasp easily the meaning of
elements.

Cascading Style Sheets

258



• Scribe, rather than SGML, probably would have been a better starting point for
the development of HTML. Scribe offers the best of HTML (there is a default
set of tags and conventions on how to present them), CSS (there is a default set
of presentational conventions that can be modified), and XML (new elements
can be created). Also, Scribe is much simpler than SGML. On the other hand,
there might have been legal problems with using Scribe, and Scribe's
presentation system might not have evolved into a style sheet language that
fulfills the requirements of the web.

• Most of the style sheet languages that were proposed for the web contained some
innovative features. Some of these were later included in the development of
CSS, but many were not. There are good reasons for not including all suggested
features as the resulting specification will be too complex and may have
conflicting functionality. However, some of the ideas proposed would have
improved style sheets for the web and I believe it's unfortunate that CSS did not
include them. In particular, the length units relative to the display (pcd, nlh, p)
proposed by JEP would have been a valuable addition.

• Transformation-based style sheet languages may be suitable in traditional
publishing environments but they are not suitable on the web. This is primarily
due to not being able to support progressive rendering.

• Specifications can fail for a number of reasons. One of the specifications
mentioned in this thesis, ODA, has three significant factors against it:
complexity, it uses a binary encoding system, and the specification is not freely
available. Rather, specifications should be simple, the language they describe
should be easy to read and write, and the specification should be freely available.

• Having an archived mailing list open to the public is very important for the
design of new specifications. Such a list will attract skilled people with new ideas,
and it allows the authors and editors of a specification to express the thinking
behind features. In the case of CSS, a community formed around the www-style
mailing list. For a retrospective analysis, like this thesis, the mailing list archives
provide valuable information.

• Interoperability is one of the main goals for web specifications. Next to the
specification itself, a comprehensive test suite is the most important tool for
ensuring interoperability. In retrospect, the introduction of CSS on the web
would have been faster and easier if a test suite had been developed concurrently
with the specification.

Chapter 11: Conclusions

259





Glossary

actual value
The property value which is actually used in the presentation of the document.
The actual value may be different from the specified value due to limitations
in the output device (e.g., the lack of certain font sizes).

anchor
An end point of a link. There are two types of anchors: source anchors and
target anchors.

application
A (somewhat complex) computer program that has a user interface.

area
An area is to a sequence model what a box is in a box model. That is, an
area is a rectangular container that encloses content and which is laid out in
the layout area. There are two main types of areas: display areas and inline
areas.

attribute
A name or name/value pair written inside a start tag.

author
A person who writes documents and associated style sheets.

author style sheet
A style sheet embedded into, or linked from, a document.

band
A box in the CSS box model has three bands: padding, border and margin. The
bands are surfaces which surround the boxes. Margin bands may have negative
width, while padding and border bands must be zero or positive.

261



binding
The process of combining a structured document with a style sheet with the
intention of formatting the document into a final form presentation.

block-level element
An element which generates one or more block boxes.

block box
A box generated by a block-level element, which has a line break before and
after itself.

box
A rectangular container that encloses content and other boxes which is laid
out in the layout area. There are two main types of boxes: block boxes and
inline boxes.

box model
A visual formatting model where content is laid out in nested rectangular
boxes that form a tree structure.

browser
See web browser.

browser style sheet
A style sheet that describes the default presentation of documents.

cascading
The process of combining several style sheets and resolving conflicts between
them.

character
An entry in the Unicode Character Database [Unicode].

client
An application that communicates with a server over a network.

constraint
An expression of a restrictive geometrical relationship between elements.

Cascading Style Sheets

262



content
The parts of a source document which are not markup. Also, the term refers
to externally linked resources, for example, images and graphics.

content model
The content model describes which constructs (e.g., elements and attributes)
are allowed where in the structure of a document.

contextual selector
A selector whose search pattern depends on multiple elements, rather than a
single one.

continuous media type
A class of output devices which has a continuous, rather than a paged
presentation surface.

containing block
A rectangular box generated by a block-level ancestor element to which a
descendant box relates geometrically.

declaration
A property and value pair.

declarative language
A declarative language is a general term for languages which express
relationships between variables, as opposed to imperative languages which
specify explicit sequences of steps to be followed, in order to produce a result.
Often, declarative languages are not Turing-complete, while imperative
languages are. All style sheet languages described in this thesis are declarative.

default style sheet
A style sheet which describes a default presentation of a document language
(e.g., HTML) and which is embedded into a browser.

designer
A person who writes style sheets.

Glossary

263



digital document
A document represented by digits on a medium which is computer readable
(e.g., a hard disk or CD-ROM) but not human readable.

display area
A rectangular area generated by a block-level element in a sequence
model.

document
A collection of content, typically consisting of text, images and graphics.
Traditionally, documents reach readers on printed paper, but electronic
publishing is increasingly popular.

document format
A language for storing and exchanging digital documents, for example, HTML.

document language
The document format of the source document, for example HTML.

draft
A proposal.

editor
An application which allows its users to compose and edit documents.

electronic publishing
A form of publishing where documents are transmitted in digital form from the
author to the reader. The web is an example of electronic publishing.

element
The primary syntactic construct of a structured document.

element type
The name of an element (e.g., H1 and BLOCKQUTE in HTML). The element
type is referred to as the Generic Identifier in SGML.

embedded style sheets
Style sheets which are placed inside a document, rather than linked to. In
HTML, style sheets can be embedded in the STYLE element and in the STYLE
attribute.

Cascading Style Sheets

264



environment variable
A parameter in the user's environment, for example, the width of the display or
the time of day.

fallback value
A value which is used if the intended value is unavailable, for example, while
the style sheet is being downloaded.

final form
A document is said to be in its final form when it no longer can be edited, and is
ready for presentation to the user. A final form document can either be in a
digital format (e.g., PDF) or printed on paper.

flow object
DSSSL's term for formatting object.

font
A typeface which can be classified by several characteristics, including family,
size, weight and slant.

formatter
A computer program that formats a document.

formatting
The process of converting a structured document combined with a style
sheet into a final form presentation.

formatting model
A schematic description of all presentation-oriented features a style sheet
language is capable of expressing.

formatting object
An object which embodies certain content, along with information on how to
present the content. An object which describes how a certain element is to be
presented. The formatting object has no information about the logical role of
the element; only about the presentation of the elements. The formatting
object may be expressed in explicit markup (XSL-FO) or only exist within a
formatter (CSS). If expressed in explicit markup, a formatting object is similar
to a presentational element.

Glossary

265



forward-compatible parsing
A grammar that is valid for all versions of a language: past, present and future.
The purpose of the forward-compatible parsing in CSS is to allow future
versions to include new functionality while ensuring that older
implementations can parse the new style sheets.

generated content
Content which is specified in the style sheet rather than in the source
document. Examples of generated content include simple strings, quote
marks, counters, cross-references, headers/footers, horizontal rules, and table of
contents.

generated text
Textual content which is specified in the style sheet rather than in the source
document. Generated text is a form of generated content.

generic markup
Markup where the vocabulary of tags and other symbols are unknown to the
recipient. That is, the markup can only be processed at the syntax level and not
at any higher levels of abstraction.

glyph
A shape in a font that is used to represent one or more characters in the
layout area.

GUI
Graphical user interface.

individual property
A property which is not a shorthand property. That is, setting a value on an
individual property does not assign values to properties other than the
individual property.

inheritance
A value propagation mechanism that transfers property values from a parent
element to its child elements. The main benefit of inheritance is less verbose
style sheets.

Cascading Style Sheets

266



initial containing block
A rectangular box, established by the formatter, which serves as the container
for a document's presentation.

inline area
A rectangular area generated by an inline element in a sequence model.

inline box
A box generated by a inline element which, in general, does not have a line
break before and after itself.

inline element
An element which generates one or more inline boxes.

initial value
The value given to an element/property combination if no other value is set or
inherited. Often called the “default” value.

inside-out formatting
Formatting where the size of the box (or area) is determined by its content.

instant binding
The concept of combining structured documents with style sheets in real time
during the authoring process.

ladder of abstraction
A measurement tool for digital documents. Documents that are high on the
ladder of abstraction are semantically richer than documents that are low on the
ladder of abstraction. Also, documents that are high on the ladder need more
processing before reaching their final form.

late binding
The concept of combining structured documents with style sheets after the
authoring has been completed. This way, authors do not have to worry about
the presentation of the document during authoring.

Glossary

267



later binding
The concept of combining structured documents with style sheets on the user
side rather than on the author side, thereby allowing user preferences to be
taken into account.

layout area
A two-dimensional surface onto which documents are rendered, for example,
printed paper and computer screens.

leading
Typographers used to add pieces of lead to increase the space between lines of
typesetting. The term leading describes the space between lines. In CSS, the
term refers to the difference between the values of font-size and
line-height.

link
A connection from one web resource to another. A link has two ends, called
anchors, and a direction.

list-item element
A block-level element which generates a list-item marker in addition to
one or more block boxes.

list-item marker
A symbol or image that marks a list item, for example, a bullet or a circle.

logical element
An element whose role, as opposed to presentation, is known. For example,
the H1 element in HTML specifies that its content is a headline of level 1, but
says nothing about the presentation of the content. A logical element is higher
on the ladder of abstraction than is a presentational element.

logical markup
Markup consisting primarily of logical elements, rather than presentational
elements.

logical structure
A document representation consisting primarily of logical elements, rather
than formatting objects.

Cascading Style Sheets

268



markup
Tags and other symbols that, when embedded into content, form a source
document.

markup language
A vocabulary of tags and other symbols that, when embedded into content,
increases the level of abstraction and enables the processing of the content.

media type
A class of output devices. CSS2 names nine media types (aural, braille,
embossed, handheld, print, projection, screen, tty, tv) so that style sheets can be
targeted for particular output devices.

origin
The origin of a CSS style sheet is the author, the user, or the browser.

out-of-order rendering
Presenting content in a different order from that specified in the source
document.

output device
A physical unit capable of rendering documents visually or aurally.

outside-in formatting
The size of the box (or area) is determined by its containing block.

paged media
A class of output devices which divides the layout area into discrete pages
rather than being continuous.

point
A unit of length equal to 1/72nd of an inch.

pixel
A pixel is the smallest addressable unit on bitmapped computer displays and
printers. Lengths and font sizes are often measured in terms of pixels, and style
sheet languages often offer pixels as unit of measurement. Since the density of
pixels varies widely from one output device to another, CSS defines the pixel
unit relative to a reference pixel.

Glossary

269



plug-in
A program which extends the functionality of a browser.

presentational element
An element whose presentation, as opposed to role, is known. For example,
the B element in HTML specifies that its content should be presented
bold-faced, but says nothing about the role of the content. A presentational
element is lower on the ladder of abstraction than is a logical element. A
presentational element is at the same level of abstraction as a formatting
object.

presentational structure
A document representation consisting of formatting objects rather than
logical elements.

procedural markup
Markup that denote imperative instructions to the formatter (for example, a
instruction to start on a new page).

processing instruction
A syntactic construct in SGML and XML.

progressive rendering
Browsers that support progressive rendering are able to display documents
incrementally as they are downloaded from the web.

proposal
An early, immature version of a specification.

pseudo-class
A classification of elements much like the class attribute in HTML, except
that the classification happens automatically without any attribute present in the
markup.

property
A characteristic of an element which, when attached to a particular element and
given a value, may influence the rendering the element.

Cascading Style Sheets

270



pseudo-element
Pseudo-elements mark sections of the document beyond those specified in the
document itself. CSS has four pseudo-elements: two that are determined by
formatting (first-letter and first-line) and two that support generated
content (before and after).

reader
See user.

reference pixel
In order for the pixel unit to be usable across a range of output devices, CSS
describes how pixel values should be scaled if the pixel density is very different
from that of a typical computer display. It is recommended that the reference
pixel be the visual angle of one pixel on an output device with a pixel density of
90dpi and a distance from the reader of an arm's length. For a nominal arm's
length of 28 inches, the visual angle is, therefore, about 0.0227 degrees.

replaced element
An element which is automatically replaced with content other than its own
(e.g., an image) when the element is presented to a user.

root element
In a tree-structured document, the root element is the oldest ancestor of all
other elements and the only element which has no parent.

rule
A statement that consists of a selector and a declaration.

selector
A search pattern that identifies to what elements the corresponding
declaration applies.

semantic markup
See logical markup.

sequence model
A visual formatting model in which content is laid out in a sequence of areas
inside a layout area (as opposed to the box model).

Glossary

271



shorthand property
Shorthand properties offer a way of setting the value of several related
individual properties into one simple declaration. For example, in CSS, the
font property is a shorthand property for setting all font-related properties (and
line-height) at once.

small-screen mode
A browser that reformats documents for a small screen is said to be in
small-screen mode.

source anchor
The starting point of a link.

source document
A structured document which, when combined with one or more style sheets
in a formatter, produces a final form presentation.

specification
A technical document that describes an aspect of communication between
computers, for example a document format, style sheet language, or a
transfer protocol. Before specifications reach a certain level of maturity, they are
referred to as “proposals” or “drafts”. W3C's Recommendations, ISO's Standards
and IETF's RFCs are examples of specifications.

specificity
A measurement of how explicit is a selector.

specified value
The property value that is specified in the style sheet (as opposed to the actual
value).

stream-based
A style sheet language that can support progressive rendering of documents
is said to be stream-based.

structured document
A digital document consisting of hierarchical elements containing text and
other content. The elements primarily represent the logical roles of the content
rather than the presentation of the content.

Cascading Style Sheets

272



structured document system
A system for electronic publishing that recognizes the difference between the
logical structure and the presentational structure of a document. Authors
are typically encouraged to edit the logical structure, which is later transformed
into a presentational structure. A structured document system consists of a
document format and optional implementations. Examples of structured
document systems are: LaTex, ODA, SGML, and HTML.

style sheet
In the context of electronic publishing, including this thesis, the following
definition of a style sheet is offered:

A set of rules that associate stylistic properties and values with structural elements in
a document, thereby expressing how to present the document. Style sheets generally
do not contain content; are linkable from documents; and are reusable.

Since style sheets are the topic of this thesis, some other definitions are also
offered. They are, in chronological order:

• A definition of how the term is used in paper-based publishing is found in
[Brüggemann-Klein 1992]:

A running account of rules about diction and language usage adopted for a
particular manuscript

• From [English 1994a]:

A stylesheet is a collection of style specifications prepared by the document
author.

• CSS1 [CSS1 1996] defined the term to mean:

a collection of rules

where the term “rule” is defined as:

a declaration (e.g. 'font-family: helvetica') and its selector (e.g. 'H1')

• Another definition can be found in [Prescod 1997a]:

... a series of statements that map structural elements (from the source
document) into formatting objects.

• CSS2 [CSS2 1998] contained another definition of the term:

A set of statements that specify presentation of a document.

Glossary

273



• From [Munson 1999]:

A style sheet is a specification of how a document should look.

style sheet language
A language that has a syntax, selectors, properties, values and units, value
propagation, and a formatting model. Style sheet languages are used to express
style sheets.

surf
To browse web documents.

tag
A syntactic construct that marks the start and end of elements in HTML and
other markup languages.

target anchor
The destination of a link.

transformation-based style sheet language
A style sheet language that is also a transformation language.

transformation language
A language that expresses how to convert a document from one form to
another. Some style sheet languages consider formatting to be a transformation.

tree structure
Elements in a tree structure always have only one parent element (except the
root element, which has none), but can have zero or more child elements.

Turing-complete
A Turing-complete system is one which has computational power equivalent
to a universal Turing machine. The term Turing-complete is often used in a lax
sense for programming languages that can implement any well-defined
algorithm, as opposed languages that are not as powerful. Most style sheet
languages are not Turing-complete, but some – including DSSSL and XSL –
are.

Cascading Style Sheets

274



unit
A precisely specified quantity in terms of which values can be stated. Examples
of units in style sheets are points and pixels.

URL
A web address.

URI
See URL.

user
A human being who uses a web browser.

user agent
A web browser.

user style sheet
A style sheet supplied by the user. The user style sheet encodes user
preferences.

value
Each legal element/property combination has a value. The value can be a
string, a keyword, a number, or a number with a unit identifier. Also, values
can be lists or expressions involving several of the aforementioned
determinants.

value propagation
Automatic assignment of values which are not described in a style sheet.
Example of value propagation mechanisms are inheritance, initial values and
cascading.

viewport
A window, or other viewing area on the screen, which exposes part of the
layout area.

web
See World Wide Web.

Glossary

275



web browser
A computer program which fetches resources (for example text, graphics, and
style sheets) from the web, decodes and assembles the resources, and presents
the resulting content to a human user.

web device
An electronic device which has a web browser and network access to the web.

web page
A document which is available on the web.

winning declaration
If there are several conflicting declarations that apply to a given
element/property combination, the cascading process will determine one
winning declaration among the set of declarations that apply. For example, a
declaration in an author style sheet will typically win over a declaration in a
browser style sheet.

word processor
A computer program used for authoring and editing documents.

World Wide Web
A system of connected servers that uses HTTP to transfer documents and other
information on request to browsers. The documents are typically written in
HTML and include links to other documents.

Cascading Style Sheets

276

browser_style_sheet


References

[Adie 1993]
Adie, C.; Networking Multimedia Applications; Message posted to www-talk
Thu, 3 Jun 1993; Available from http://www.webhistory.org/

www.lists/www-talk.1993q2/0433.html; Accessed 25 Oct 2004.

[Adler 2002]
Adler, S.; Re: xsl-fo first anniversary; Message posted to www-xsl-fo@w3.org
21 Oct 2002; Available from http://lists.w3.org/Archives/Public/

www-xsl-fo/2002Oct/0076.html; Accessed 25 Oct 2004.

[Adobe 1993]
Portable Document Format; Reference Manual, Adobe Systems,
Addison-Wesley, 1993

[Adobe 2001]
PDF Reference, Third Edition, Version 1.4, Addison-Wesley, 2001

[Amaya]
Welcome to Amaya; W3C web page, 2004; Available from
http://www.w3.org/Amaya/; Accessed 25 Oct 2004.

[André, et al. 1989]
André, J., Furuta, R., and Quint, V. (editors); Structured Documents; The
Cambridge series on electronic publishing, Cambridge University Press, 1989

[Andreessen 1993a]
Andreessen, M.; NCSA Mosaic for X 0.10 available; Message posted to
comp.infosystems.gopher, comp.infosystems.wais, comp.infosystems,
alt.hypertext and comp.windows.x 15 Mar 1993; Available from
http://groups.google.com/groups?selm=MARCA.93Mar14225600%40

wintermute.ncsa.uiuc.edu&output=gplain; Accessed 25 Oct 2004.

277

http://www.webhistory.org/www.lists/www-talk.1993q2/0433.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0433.html
http://lists.w3.org/Archives/Public/www-xsl-fo/2002Oct/0076.html
http://lists.w3.org/Archives/Public/www-xsl-fo/2002Oct/0076.html
http://www.w3.org/Amaya/
http://groups.google.com/groups?selm=MARCA.93Mar14225600%40wintermute.ncsa.uiuc.edu&output=gplain
http://groups.google.com/groups?selm=MARCA.93Mar14225600%40wintermute.ncsa.uiuc.edu&output=gplain


[Andreessen 1993b]
Andreessen, M.; Stylesheet Language; Message posted to www-talk 22 Oct
1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q4/0266.html; Accessed 25 Oct 2004.

[Andreessen 1994a]
Andreessen, M.; Indented <MENU>s; Message posted to www-talk 17 Feb
1994; Available from http://www.webhistory.org/www.lists/

www-talk.1994q1/0648.html; Accessed 25 Oct 2004.

[Andreessen 1994b]
Andreessen, M.; Mosaic Netscape is out the door...; Message posted to
www-talk 13 Oct 1994; Available from http://www.webhistory.org/

www.lists/www-talk.1994q4/0187.html; Accessed 25 Oct 2004.

[Appelt 1991]
Appelt, W.; Document architecture in open systems: The ODA standard;
Springer-Verlag, 1991

[Badros et al. 1999]
Badros, G. J., Borning, A., Marriott, K. and Stuckey, P.; Constraint Cascading
Style Sheets for the Web; Technical Report UW CSE 99-05-01; Reprinted in
Proceedings of the 12th annual ACM symposium on User interface software
and technology, p.73-82, November 1999, Asheville, North Carolina, United
States

[Behlendorf 1994]
Behlendorf, B.; Re: Cascading HTML style sheets – a proposal; Message
posted to www-talk 13 Oct 1994; Available from http://www.w3.org/

Style/History/www.eit.com/www.lists/

www-talk.1994q4/0186.html; Accessed 25 Oct 2004.

[Berners-Lee 1991a]
Berners-Lee, T.; HTML Tags; Available from http://www.w3.org/

History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html;
Accessed 25 Oct 2004.

Cascading Style Sheets

278

http://www.webhistory.org/www.lists/www-talk.1993q4/0266.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0266.html
http://www.webhistory.org/www.lists/www-talk.1994q1/0648.html
http://www.webhistory.org/www.lists/www-talk.1994q1/0648.html
http://www.webhistory.org/www.lists/www-talk.1994q4/0187.html
http://www.webhistory.org/www.lists/www-talk.1994q4/0187.html
http://www.w3.org/Style/History/www.eit.com/www.lists/www-talk.1994q4/0186.html
http://www.w3.org/Style/History/www.eit.com/www.lists/www-talk.1994q4/0186.html
http://www.w3.org/Style/History/www.eit.com/www.lists/www-talk.1994q4/0186.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/Tags.html


[Berners-Lee 1991b]
Berners-Lee, T.; Re: status. Re: X11 BROWSER for WWW; Message posted
to www-talk 29 Oct 1991; Available from http://lists.w3.org/

Archives/Public/www-talk/1991SepOct/0003.html; Accessed 25 Oct
2004.

[Berners-Lee 1992a]
Berners-Lee, T.; MIME, SGML, UDIs, HTML and W3; Message posted to
www-talk 11 Jun 1992; Available from http://lists.w3.org/Archives/

Public/www-talk/1992MayJun/0038.html; Accessed 25 Oct 2004.

[Berners-Lee 1992b]
Berners-Lee, T.; Re: HTML DTD; Message posted to www-talk 26 Jun 1992;
Available from http://lists.w3.org/Archives/Public/www-talk/

1992MayJun/0063.html; Accessed 25 Oct 2004.

[Berners-Lee 1992c]
Berners-Lee, T.; Re: HTML DTD and related problems (rather long);
Message posted to www-talk 15 Jul 1992; Available from
http://lists.w3.org/Archives/Public/www-talk/

1992JulAug/0017.html; Accessed 25 Oct 2004.

[Berners-Lee 1992d]
Berners-Lee, T.; Design Constraints; Document last changed 13 Nov 1992;
Available from http://www.w3.org/History/19921103-hypertext/

hypertext/WWW/MarkUp/HTMLConstraints.html; Accessed 25 Oct 2004.

[Berners-Lee 1993a]
Berners-Lee, T.; HTML, HMML, and HyperTeX; Message posted to
www-talk 21 Apr 1993; Available from http://www.webhistory.org/

www.lists/www-talk.1993q2/0129.html; Accessed 25 Oct 2004.

[Berners-Lee 1993b]
Berners-Lee, T.; Re: RE dtd2.html; Message posted to www-talk 27 May
1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0396.html; Accessed 25 Oct 2004.

References

279

http://lists.w3.org/Archives/Public/www-talk/1991SepOct/0003.html
http://lists.w3.org/Archives/Public/www-talk/1991SepOct/0003.html
http://lists.w3.org/Archives/Public/www-talk/1992MayJun/0038.html
http://lists.w3.org/Archives/Public/www-talk/1992MayJun/0038.html
http://lists.w3.org/Archives/Public/www-talk/1992MayJun/0063.html
http://lists.w3.org/Archives/Public/www-talk/1992MayJun/0063.html
http://lists.w3.org/Archives/Public/www-talk/1992JulAug/0017.html
http://lists.w3.org/Archives/Public/www-talk/1992JulAug/0017.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/HTMLConstraints.html
http://www.w3.org/History/19921103-hypertext/hypertext/WWW/MarkUp/HTMLConstraints.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0129.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0129.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0396.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0396.html


[Berners-Lee 1993c]
Berners-Lee, T.; Re: browsing vs validation, or, why not to make software
robust; Message posted to www-talk 20 Aug 1993; Available from
http://www.webhistory.org/www.lists/

www-talk.1993q3/0745.html; Accessed 25 Oct 2004.

[Berners-Lee 1994]
Berners-Lee, T.; HTML *** Important ** LIST CHANGE; Available from
http://www.webhistory.org/www.lists/

www-talk.1994q2/0581.html; Accessed 25 Oct 2004.

[Berners-Lee 1996]
The Web Maestro: An Interview with Tim Berners-Lee; inteview written by
Brody, H.; published in Technology Review 99, no. 5: 32-40, July 1996

[Berners-Lee 1999]
Berners-Lee, T.; Weaving the Web; Harper, San Francisco, 1999

[Bingham 2000]
Bingham, H.; CALS Table Model History; Original public version 1.3
2000-06-30; Available from http://users.rcn.com/hwbingham/

tables/calstbhs.htm; Accessed 25 Oct 2004.

[Borenstein 1994]
Borenstein, N.; The text/enriched MIME Content-type; RFC1563, January
1994

[Bos 1994]
Bos, B.; Re: Cascading HTML style sheets – a proposal; Message posted to
www-talk 11 Oct 1994; Available from http://www.webhistory.org/

www.lists/www-talk.1994q4/0158.html; Accessed 25 Oct 2004.

[Bos 1995]
Bos, B.; Stream-based Style sheet Proposal; Web page last updated 31 March
1995; Available from http://odur.let.rug.nl/

~bert/stylesheets.html; Accessed 25 Oct 2004.

Cascading Style Sheets

280

http://www.webhistory.org/www.lists/www-talk.1993q3/0745.html
http://www.webhistory.org/www.lists/www-talk.1993q3/0745.html
http://www.webhistory.org/www.lists/www-talk.1994q2/0581.html
http://www.webhistory.org/www.lists/www-talk.1994q2/0581.html
http://users.rcn.com/hwbingham/tables/calstbhs.htm
http://users.rcn.com/hwbingham/tables/calstbhs.htm
http://rfc.net/rfc1563.html
http://www.webhistory.org/www.lists/www-talk.1994q4/0158.html
http://www.webhistory.org/www.lists/www-talk.1994q4/0158.html
http://odur.let.rug.nl/~bert/stylesheets.html
http://odur.let.rug.nl/~bert/stylesheets.html


[Bos 1998]
Bos, B.; OPINIONS WANTED: regexps in CSS? (Re: Suggestion for
Attribute Selectors); Message posted to www-style 10 Mar 1998; Available
from http://lists.w3.org/Archives/Public/www-style/

1998Mar/0051.html; Accessed 25 Oct 2004.

[Bosak 1995]
Bosak, J.; Toward a specification of DSSSL Core; Message posted 9 Oct 1995
to dsssl-lite; Available from http://xml.coverpages.org/

dssslCore1.txt; Accessed 25 Oct 2004.

[Bosak 1996a]
Bosak, J.; SGML: DSSSL style sheet for HTML 3.2 print output; Message
posted 21 Jul 1996; Available from http://xml.coverpages.org/

dsssl-o-html32.html; Accessed 25 Oct 2004.

[Bosak 1996b]
Bosak, J.; Greetings from the chair; Message posted to w3c-sgml-wg@w3.org
28 Aug 1996; Available from http://lists.w3.org/Archives/Public/

w3c-sgml-wg/msg00004.html; Accessed 25 Oct 2004.

[Bosak 1997]
Bosak, J.; RE: Positioning HTML Elements with Cascading Style Sheets;
Message posted to www-style@w3.org Feb 03 1997; Available from
http://lists.w3.org/Archives/Public/www-style/

1997Feb/0033.html; Accessed 25 Oct 2004.

[Brüggemann-Klein&Wood 1992]
Brüggemann-Klein, A., Wood, D.; Electronic Style Sheets; Interner Bericht
45, Institut für Informatik, Universitat Freiburg, 1992

[Bray 2002]
Bray, T.; XML-SW, a thought experiment; Message posted to
www-tag@w3.org 6 Feb 2002; Available from http://lists.w3.org/

Archives/Public/www-tag/2002Feb/0031.html; Accessed 25 Oct 2004.

References

281

http://lists.w3.org/Archives/Public/www-style/1998Mar/0051.html
http://lists.w3.org/Archives/Public/www-style/1998Mar/0051.html
http://xml.coverpages.org/dssslCore1.txt
http://xml.coverpages.org/dssslCore1.txt
http://xml.coverpages.org/dsssl-o-html32.html
http://xml.coverpages.org/dsssl-o-html32.html
http://lists.w3.org/Archives/Public/w3c-sgml-wg/msg00004.html
http://lists.w3.org/Archives/Public/w3c-sgml-wg/msg00004.html
http://lists.w3.org/Archives/Public/www-style/1997Feb/0033.html
http://lists.w3.org/Archives/Public/www-style/1997Feb/0033.html
http://lists.w3.org/Archives/Public/www-tag/2002Feb/0031.html
http://lists.w3.org/Archives/Public/www-tag/2002Feb/0031.html


[Burnard 1993]
Burnard, L.; FOSI/sgml stylesheets; Message posted to www-talk 27 Oct 1993;
Available from http://www.webhistory.org/www.lists/

www-talk.1993q4/0301.html; Accessed 25 Oct 2004.

[Cailliau 1997]
Cailliau, R.; Foreword of Cascading Style Sheets by Lie, H. W., and Bos, B.;
Addison-Wesley, 1997,

[Chicago 1993]
The Chicago Manual of Style; The University of Chicago Press, Fourteenth
Edition, 1993

[Chavchanidze 2004]
Chavchanidze, G.; Formatting Mathematical Articles with Cascading Style
Sheets; Revised edition published 10 Oct 2004; Available from
http://geocities.com/csssite/math.xml; Accessed 25 Oct 2004.

[Clark 1994]
Clark, J.; DSSSL Lite; Draft specification dated November 24, 1994; Originally
available from http://www.falch.no/~pepper/DSSSL-Lite/

[Clark 1998]
Clark, J.; Jade - James' DSSSL Engine; Web page last modified 13 Oct 1998;
Available from http://www.jclark.com/jade/; Accessed 25 Oct 2004.

[CLink 2000a]
Lie, H. W.; CLink; Available from http://people.opera.com/howcome/

2000/clink/2000-05-05.html; Accessed 25 Oct 2004.

[CLink 2000b]
Lie, H. W.; CLink; Available from http://people.opera.com/howcome/

2000/css3/clink-nov-6.html; Accessed 25 Oct 2004.

[Connolly 1992]
Dan Connolly; MIME as a hypertext architecture; Message posted to
www-talk 6 Jun 92; Available from: http://lists.w3.org/Archives/
Public/www-talk/1992MayJun/0020.html; Accessed 25 Oct 2004.

Cascading Style Sheets

282

http://www.webhistory.org/www.lists/www-talk.1993q4/0301.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0301.html
http://geocities.com/csssite/math.xml
http://www.jclark.com/jade/
http://people.opera.com/howcome/2000/clink/2000-05-05.html
http://people.opera.com/howcome/2000/clink/2000-05-05.html
http://people.opera.com/howcome/2000/css3/clink-nov-6.html
http://people.opera.com/howcome/2000/css3/clink-nov-6.html
http://lists.w3.org/Archives/Public/www-talk/1992MayJun/0020.html
http://lists.w3.org/Archives/Public/www-talk/1992MayJun/0020.html


[Connolly 1994a]
Connolly, D.; Some Background on SGML for the World-Wide Web; Essay
available from http://www.w3.org/MarkUp/html-spec/html-essay.html;
Accessed 25 Oct 2004.

[Connolly 1994b]
Connolly, D.; Toward Closure on HTML; Message posted to www-talk 4 Apr
1994; Available from http://www.webhistory.org/www.lists/

www-talk.1994q2/0020.html; Accessed 25 Oct 2004.

[Connolly 1996]
Connolly, D.; Generic SGML Activity Launched; W3C Newsletter, Volume
2, No. 7, 5 Jun 1996

[Connolly 1997]
Connolly, D.; XML Enables Custom Markup Schemes; W3C Newsletter,
Volume 3, No. 6, 21 Mar 1997

[Connolly 2000]
Connolly, D.; Re: XHTML Invalidity / WML2 / New XHTML 1.1 Attribute;
Message posted to www-html@w3.org 12 Aug 2000; Available from
http://lists.w3.org/Archives/Public/

www-html/2000Aug/0052.html; Accessed 25 Oct 2004.

[CSS draft1 1995]
Cascading Style Sheets: a draft specification; Draft specification published 31
May 1995; Available from http://www.w3.org/Style/CSS/draft1.html;
Accessed 25 Oct 2004.

[CSS draft2 1995]
Cascading Style Sheets: a draft specification; Draft specification published 3 Jul
1995; Available from http://www.w3.org/Style/CSS/draft2.html;
Accessed 25 Oct 2004.

[CSS draft3 1995]
Cascading Style Sheets: a draft specification; Draft specification published 10
Aug 1995; Available from http://www.w3.org/Style/CSS/draft3.html;
Accessed 25 Oct 2004.

References

283

http://www.w3.org/MarkUp/html-spec/html-essay.html
http://www.webhistory.org/www.lists/www-talk.1994q2/0020.html
http://www.webhistory.org/www.lists/www-talk.1994q2/0020.html
http://lists.w3.org/Archives/Public/www-html/2000Aug/0052.html
http://lists.w3.org/Archives/Public/www-html/2000Aug/0052.html
http://www.w3.org/Style/CSS/draft1.html
http://www.w3.org/Style/CSS/draft2.html
http://www.w3.org/Style/CSS/draft3.html


[CSS draft4 1995]
Cascading Style Sheets: a draft specification; Draft specification published 6 Oct
1995; Available from http://www.w3.org/Style/CSS/draft4.html;
Accessed 25 Oct 2004.

[CSS draft5 1995]
Cascading Style Sheets: fifth draft specification; Draft specification published 1
Nov 1995; Available from http://www.w3.org/Style/CSS/draft5.html;
Accessed 25 Oct 2004.

[CSS draft6 1995]
Cascading Style Sheets, level 1; W3C Working Draft published 17 Nov 1995;
Available from http://www.w3.org/Style/CSS/draft6.html; Accessed 25
Oct 2004.

[CSS1 1996]
Cascading Style Sheets, level 1; Lie, H. W. and Bos, B.; W3C
Recommendation 17 Dec 1996; Available from http://www.w3.org/TR/

REC-CSS1-961217

[CSS2 1998]
Cascading Style Sheets, level 2; Bos, B., Lie, H. W., Lilley, C. and Jacobs, I.
(editors); W3C Recommendation 12 May 1998; Available from
http://www.w3.org/TR/1998/REC-CSS2-19980512

[Davis 1994]
Jim Davis; Re: Toward Closure on HTML; Message posted to www-talk 5
Apr 1994; Available from http://www.webhistory.org/www.lists/

www-talk.1994q2/0050.html; Accessed 25 Oct 2004.

[DOM1 1998]
Document Object Model (DOM) Level 1 Specification; Apparao, V., Byrne,
S., Champion, M., Isaacs, S., Jacobs, I., Le Hors, A., Nicol, G., Robie, J.,
Sutor, R., Wilson, C. and Wood, L.; W3C Recommendation 1 Oct 1998;
Available from http://www.w3.org/TR/REC-DOM-Level-1/

Cascading Style Sheets

284

http://www.w3.org/Style/CSS/draft4.html
http://www.w3.org/Style/CSS/draft5.html
http://www.w3.org/Style/CSS/draft6.html
http://www.w3.org/TR/REC-CSS1-961217
http://www.w3.org/TR/REC-CSS1-961217
http://www.w3.org/TR/1998/REC-CSS2-19980512
http://www.webhistory.org/www.lists/www-talk.1994q2/0050.html
http://www.webhistory.org/www.lists/www-talk.1994q2/0050.html
http://www.w3.org/TR/REC-DOM-Level-1/


[Dougherty 1993]
Re: Re HMML?; Dougherty, D.; Message posted to www-talk 25 May 1993;
Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0388.html; Accessed 25 Oct 2004.

[DSSSL 1996]
Document Style Semantics and Specification Language (DSSSL); ISO/IEC
10179:1996; The DSSSL specification is available in compressed form from
http://metalab.unc.edu/pub/sun-info/standards/dsssl/draft/,
and in HTML from http://www.cs.berkeley.edu/~wilensky/

CS294/dsssl/html/

[dssslist]
The dssslist mailing list was startd in March 1997 as a forum for DSSSL users.
The archives for the dssslist mailing list is available from
http://lists.mulberrytech.com/dssslist/archives/; Accessed 25
Oct 2004.

[DuCharme 2001]
DuCharme, B.; Getting Loopy; xml.com, 1 Aug 2001; Available from
http://www.xml.com/pub/a/2001/08/01/gettingloopy.html?page=2;
Accessed 25 Oct 2004.

[EBT 1997]
EBT ANNOUNCES PLANS TO SUPPORT IMPORTANT NEW
PUBLISHING STANDARD: DSSSL; Press release from Electronic Book
Technologies Inc, Providence, RI, USA; Available from
http://xml.coverpages.org/ebtDSSSL.html; Accessed 25 Oct 2004.

[Electronic Publishing]
Electronic Publishing—Origination, Dissemination and Design; John Wiley &
Sons, ISSN 0894-3982; A cumulative contents page is available from
http://cajun.cs.nott.ac.uk/compsci/epo/papers/epoddtoc.html;
Accessed 25 Oct 2004

References

285

http://www.webhistory.org/www.lists/www-talk.1993q2/0388.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0388.html
http://metalab.unc.edu/pub/sun-info/standards/dsssl/draft/
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/
http://www.cs.berkeley.edu/~wilensky/CS294/dsssl/html/
http://lists.mulberrytech.com/dssslist/archives/
http://www.xml.com/pub/a/2001/08/01/gettingloopy.html?page=2
http://xml.coverpages.org/ebtDSSSL.html
http://cajun.cs.nott.ac.uk/compsci/epo/papers/epoddtoc.html


[English 1994a]
English, J.; Style Sheets for HTML; 18 Nov 1994; An electronic version is
available from http://www.w3.org/Style/History/jenglish.ps;
Accessed 25 Oct 2004.

[English 1994b]
English, J.; Style Sheets; Message posted to www-html 18 Nov 1994; Available
from http://lists.w3.org/Archives/Public/www-html/

1994Nov/0064.html; Accessed 25 Oct 2004.

[English 2002]
Personal email correnspondance with Joe English, 2002

[FOSI 1997]
MARKUP REQUIREMENTS AND GENERIC STYLE
SPECIFICATION FOR EXCHANGE OF TEXT AND ITS
PRESENTATION; MIL-PRF-28001C, 2 May 1997; Available from
http://www.dt.navy.mil/tot-shi-sys/tec-inf-sys/cal-std/

doc/28001C.pdf; Accessed 25 Oct 2004.

[FrameMaker]
A brief history of the FrameMaker desktop publishing application is available
from http://en.wikipedia.org/wiki/FrameMaker/; Accessed 25 Oct
2004.

[Furuta, et al. 1982]
Furuta, R., Scofield, J. and Shaw, A; Document Formatting Systems: Survey,
Concepts, and Issues; Computing Surveys, 14, 3, 417472. (September 1982)
ISSN:0360-0300

[Furuta 1992]
Furuta, R; Important papers in the history of document preparation systems:
basic sources; Electronic Publishing—Origination, Dissemination, and Design;
5 (1), 19-44, 1992; Available from http://cajun.cs.nott.ac.uk/

compsci/epo/papers/volume5/issue1/ep057rf.pdf; Accessed 25 Oct
2004.

Cascading Style Sheets

286

http://www.w3.org/Style/History/jenglish.ps
http://lists.w3.org/Archives/Public/www-html/1994Nov/0064.html
http://lists.w3.org/Archives/Public/www-html/1994Nov/0064.html
http://www.dt.navy.mil/tot-shi-sys/tec-inf-sys/cal-std/doc/28001C.pdf
http://www.dt.navy.mil/tot-shi-sys/tec-inf-sys/cal-std/doc/28001C.pdf
http://en.wikipedia.org/wiki/FrameMaker/
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume5/issue1/ep057rf.pdf
http://cajun.cs.nott.ac.uk/compsci/epo/papers/volume5/issue1/ep057rf.pdf


[Germán 1997]
Germán, D. M.; An Introduction to DSSSL; 1997; Available from
http://csgrs6k1.uwaterloo.ca/~dmg/dsssl/

tutorial/tutorial.html; Accessed 25 Oct 2004.

[GIF 1990]
GRAPHICS INTERCHANGE FORMAT(sm); Version 89a, CompuServe
Incorporated, Columbus, Ohio, 1990; Available from http://www.w3.org/

Graphics/GIF/spec-gif89a.txt; Accessed 25 Oct 2004.

[Glazman 1997]
Glazman, D.; Simple Tree Transformation Sheets 2; W3C Note 17 Oct 1997;
Available from http://www.w3.org/TR/NOTE-stts2-971017; Accessed 25
Oct 2004.

[Glazman 2002]
Glazman, D.; Small Screen Rendering; Blog entry 21 Oct 21 2002; Available
from http://webperso.easyconnect.fr/danielglazman/weblog/

newarchive/2002_10_20_glazblogarc.html#s83291371; Accessed 25
Oct 2004.

[Goldfarb 1991]
Goldfarb, C. F.; The SGML Handbook; Oxford University Press, 1991

[Goldfarb et al.1997]
Goldfarb, C. F., Pepper, S. and Ensign, C.; SGML Buyer's Guide; Prentice
Hall, 1997

[Graham, et al. 1992]
Graham, S. L., Harrison, M. A. and Munson, E. V.; The Proteus Presentation
System; University of California, Berkeley, California; The paper appeared in
the Proceedings of the Fifth ACM SIGSOFT Symposium on Software
Development Environments, Tyson's Corner, VA, December 911 1992;

[Gramlich 1996]
Email from Wayne Gramlich to HTML ERB on April 12, 1996

[Grif 1993]
Grif Languages; Grif S.A., St Quentin en Yvelines, France, 1993

References

287

http://csgrs6k1.uwaterloo.ca/~dmg/dsssl/tutorial/tutorial.html
http://csgrs6k1.uwaterloo.ca/~dmg/dsssl/tutorial/tutorial.html
http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://www.w3.org/Graphics/GIF/spec-gif89a.txt
http://www.w3.org/TR/NOTE-stts2-971017
http://webperso.easyconnect.fr/danielglazman/weblog/newarchive/2002_10_20_glazblogarc.html#s83291371
http://webperso.easyconnect.fr/danielglazman/weblog/newarchive/2002_10_20_glazblogarc.html#s83291371


[Grosso 1993]
Personal email correspondance with Paul Grosso, 1993

[Harvey 2000]
Betty Harvey; Re: AW: ebXML - core components glossary of terms and
acronyms; Message posted to ebxml-core on 23 Jun 2000; Available from
http://lists.ebxml.org/archives/ebxml-core/

200006/msg00038.html; Accessed 25 Oct 2004.

[Harvey 2002]
What SGML Can Teach Us About XML & the Web; Betty Harvey
interviewed by Tony Byrne, CMSWatch, 15 Jan 2002; Available from
http://www.cmswatch.com/

Features/PeopleWatch/FeaturedPeople/?feature_id=58; Accessed 25
Oct 2004.

[Hayakawa 1940]
Hayakawa, S. I.; Language in Action; Harcourt, Brace and Company; 1940;
Later editions are named Language in thought and action.

[Heaney 1993]
Heaney, S.; Re: Stylesheet Language; Message posted to www-talk 26 Oct
1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q4/0295.html; Accessed 25 Oct 2004.

[HTML+ 1993]
Raggett, D.; HTML+ (Hypertext markup format); 8 Nov 1993; Available from
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html; Accessed 25
Oct 2004.

[HTML 3.2 1997]
Raggett, D.; HTML 3.2 Reference Specification; W3C Recommendation 14
Jan 1997; Available from http://www.w3.org/TR/REC-html32.html

[HTML2 1995]
Berners-Lee, T. and Connolly, D.; HTML 2.0; RFC1866, November 1995

Cascading Style Sheets

288

http://lists.ebxml.org/archives/ebxml-core/200006/msg00038.html
http://lists.ebxml.org/archives/ebxml-core/200006/msg00038.html
http://www.cmswatch.com/Features/PeopleWatch/FeaturedPeople/?feature_id=58
http://www.cmswatch.com/Features/PeopleWatch/FeaturedPeople/?feature_id=58
http://www.webhistory.org/www.lists/www-talk.1993q4/0295.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0295.html
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_1.html
http://www.w3.org/TR/REC-html32.html
http://rfc.net/rfc1563.html


[HTML4 1997]
HTML 4.0 Specification; Raggett, D., Le Hors, A. and Jacobs, I.; W3C
Recommendation 18 Dec 1997; Available from http://www.w3.org/

TR/REC-html40-971218/

[HTTP 1999]
Hypertext Transfer Protocol – HTTP/1.1; Fielding, R., Gettys, J., Mogul, J.,
Frystyk, H., Masinter, L., Leach, P. and Berners-Lee, T.; RFC2616, June 1999

[Hutton 2002]
Hutton, G. (editor); Frequently Asked Questions for comp.lang.functional;
Version of November 2002; Available from http://www.cs.nott.ac.uk/

~gmh/faq.html; Accessed 25 Oct 2004.

[Interleaf]
A brief history of the Interleaf desktop publishing application is available from
http://en.wikipedia.org/wiki/Interleaf/; Accessed 25 Oct 2004.

[Kennedy 1997]
Kennedy, D.; DSSSL; An Introduction; (A related version of the article in was
published in <TAG>, February 1997.) Available from
http://xml.coverpages.org/kennDSSSLInt.html; Accessed 26 Oct
2004.

[Kidwell&Richman 1997]
Kidwell, R. S. and Richman, J. G.; Final DSSSL Survey and Assessment
Report for the DOD CALS IDE PROJECT; ManTech Advanced
Technology Systems, March 1997; Available from http://www.dcnicn.com/

lamp/cals_ide/task03/html/dssslsar/cals_a009/recon02.htm;
Accessed 25 Oct 2004.

[Lamport 1986]
Lamport, L.; LaTeX: A document preparation system; Addison-Wesley,
Reading, Mass, 1986

[Lamport 2003]
Personal email correspondance with Leslie Lamport, 2003

References

289

http://www.w3.org/TR/REC-html40-971218/
http://www.w3.org/TR/REC-html40-971218/
http://rfc.net/rfc2616.html
http://www.cs.nott.ac.uk/~gmh/faq.html
http://www.cs.nott.ac.uk/~gmh/faq.html
http://en.wikipedia.org/wiki/Interleaf
http://xml.coverpages.org/kennDSSSLInt.html
http://www.dcnicn.com/lamp/cals_ide/task03/html/dssslsar/cals_a009/recon02.htm
http://www.dcnicn.com/lamp/cals_ide/task03/html/dssslsar/cals_a009/recon02.htm


[Kernighan&Richie 1978]
Kernighan, B. W., Ritchie, D. M.; The C Programming Language;
Prentice-Hall, Englewood Cliffs, NJ, 1978

[Khare&Rifkin 1998]
Khare, R., Rifkin, A.; The origin of (document) species; Proceedings of the
seventh international conference on World Wide Web, Brisbane, Australia,
1998

[Knuth&Plass 1981]
Knuth, D. E., Plass, M. F.; Breaking Paragraphs into Lines; Software Practice
and Experience, 11:1119–1184, 1981

[Knuth 1984]
Knuth, D. E.; The TeXbook; Addison-Wesley, 1984

[Lie 1994]
Lie, H. W.; Cascading HTML Style Sheets; Proposal published 10 Oct 1994;
Available from: http://www.w3.org/People/howcome/p/cascade.html;
Accessed 25 Oct 2004.

[Lie 1996]
Lie, H. W.; CSS1 status; Message posted to www-style@w3.org 25 Jan 1996;
Available from http://lists.w3.org/Archives/Public/

www-style/1996Jan/0039.html; Accessed 25 Oct 2004.

[Lie&Saarela 1999]
Lie, H. W. and Saarela, J.; Multipurpose Web Publishing using HTML, XML
and CSS; Communications of the ACM, October 1999

[Lorimer 1996]
Lorimer, P.; A critical evaluation of the historical development of the tactile
modes of reading and an analysis and evaluation of researches carried out in
endeavours to make the braille code easier to read and to write; Ph.D. Thesis,
University of Birmingham, December 1996

[Magliery 1994]
Magliery, T.; DSSSL-Lite Announcement; Message posted to www-talk 1 Dec
1994, and to comp.text.sgml, comp.infosystems.www.users,

Cascading Style Sheets

290

http://www.w3.org/People/howcome/p/cascade.html
http://lists.w3.org/Archives/Public/www-style/1996Jan/0039.html
http://lists.w3.org/Archives/Public/www-style/1996Jan/0039.html


comp.infosystems.www.misc, comp.infosystems.www.providers 2 Dec 1994;
Available from http://xml.coverpages.org/dsssl-lite-ann.html;
Accessed 25 Oct 2004.

[Marden&Munson 1997]
Marden, P. M. and Munson, E. V.; Multiple presentations of WWW
documents using style sheets; Proceedings of the 1997 workshop on New
paradigms in information visualization and manipulation, Las Vegas, Nevada,
United States, pp. 75-78, 1997

[Marden&Munson 1998]
Marden, P. M. and Munson, E. V.; PSL: An alternate approach to style sheet
languages for the world wide web; Journal of Universal Computer Science,
4(10), 1998

[Marden&Munson 1999]
Marden, P. M. and Munson, E. V.; Today's Style Sheet Standards: The Great
Vision Blinded; Computer, November 1999

[Mason 2001]
Mason, J. D.; History (was: Re: Montreal meeting recommendations); Message
sent to sc34wg3@isotopicmaps.org 18 Sep 2001; Available from
http://www.isotopicmaps.org/pipermail/sc34wg3/

2001-September/000047.html; Accessed 26 Oct 2004.

[MathML 1998]
Mathematical Markup Language (MathML) 1.0 Specification; Ion, P., Miner,
R. (editors); W3C Recommendation 7 Apr 1998; Available from
http://www.w3.org/TR/1998/REC-MathML-19980407/

[Michalowski 1999]
Michalowski, B.; A Constraint-Based Specification for Box Layout in CSS2;
UW Tech Report UW-CSE-98-06-03, Department of Computer Science and
Engineering, University of Washington, Seattle, June 1998

[Milowski 1997]
Alexander Milowski; Re: Heresy? Re: DSSSL WWW Enhancements; Message
posted to dssslist 18 May 1997; Available from http://www.biglist.com/

References

291

http://xml.coverpages.org/dsssl-lite-ann.html
http://www.isotopicmaps.org/pipermail/sc34wg3/2001-September/000047.html
http://www.isotopicmaps.org/pipermail/sc34wg3/2001-September/000047.html
http://www.w3.org/TR/1998/REC-MathML-19980407/
http://www.biglist.com/lists/dssslist/archives/199705/msg00038.html


lists/dssslist/archives/199705/msg00038.html; Accessed 25 Oct
2004.

[Mosaic]
A brief history of the Mosaic browser is available from
http://en.wikipedia.org/wiki/Mosaic_web_browser; Accessed 25 Oct
2004.

[MS-Word]
A brief history of the Microsoft Word text processor is available from
http://en.wikipedia.org/wiki/Microsoft_Word; Accessed 25 Oct
2004.

[Munson 1994]
Munson, E. V.; Proteus: An Adaptable Presentation System for a Software
Development and Multimedia Document Environment; PhD dissertation,
University of California, Berkeley, December 1994

[Munson 1996]
Munson, E. V.; A new presentation language for structured documents;
Electronic Publishing, Vol. 8 (2&3), pp. 125138 (June & September 1995),
Paper received 16 Apr 1996, revised 28 June 1996

[Munson&Pfeiffer 1999]
Munson, E. V., Pfeiffer, M.; A Representation of Media for Multimedia
Authoring and Browsing Systems; Proceedings of the AAAI 98 Workshop on
Representations for Multi-Modal Human-Computer Interaction, Madison,
WI, USA, July 1998

[Munson 2003]
Personal email correspondance with Ethan Muson, 2003

[Naggum 1994]
Naggum, E; Erik Naggum's review of DSSSL (DIS); Message posted to
comp.text.sgml 5 Dec 1994 under the title DSSSL; Available from
http://xml.coverpages.org/dsssl-note-erik.html; Accessed 25 Oct
2004.

Cascading Style Sheets

292

http://www.biglist.com/lists/dssslist/archives/199705/msg00038.html
http://en.wikipedia.org/wiki/Mosaic_web_browser/
http://en.wikipedia.org/wiki/Microsoft_Word/
http://xml.coverpages.org/dsssl-note-erik.html


[Nicol 1995]
Gavin Nicol; Re: A New Era of Afforable Tools; Message posted to
comp.text.sgml 10 Jun 1995; Available from http://groups.google.com/

groups?selm=GTN.95Jun10022744%40ebt-inc&output=gplain; Accessed
25 Oct 2004.

[Nielsen&Lie 1994]
Nielsen, H. F. and Lie, H. W.; Towards a Uniform Library of Common Code;
Proceedings of Second International WWW Conference '94, Chicago, 1994;

[Nielsen 1996]
Jakob Nielsen; Why Frames Suck (Most of the Time); December, 1996;
Available from http://www.useit.com/alertbox/9612.html; Accessed 25
Oct 2004

[NOTE-XSL 1997]
A Proposal for XSL; Adler, S., Berglund, A., Clark, J., Cseri, I., Grosso, P.,
Marsh, J., Nicol, G., Paoli, J., Schach, D., Thompson, H. S. and Wilson, C.;
Available from http://www.w3.org/TR/NOTE-XSL-970910; Accessed 26
Oct 2004.

[ODA]
Office Document Architecture (ODA) and Interchange Format; A family of
specifications published as drafts from around 1988, and issued as ISO/IEC
standards 1994-1998.

[Opera]
A brief description of the Opera browser is available from
http://en.wikipedia.org/wiki/Opera_browser; Accessed 25 Oct 2004.

[OpenOffice]
A brief description of the OpenOffice.org office applications suite is available
from http://en.wikipedia.org/wiki/Openoffice; Accessed 25 Oct
2004.

[OSI]
A bried description of the Open Systems Interconnection Reference Model
(“OSI Model” or “OSI Reference Model” for short) can be found from
http://en.wikipedia.org/wiki/OSI_model; Accessed 25 Oct 2004.

References

293

http://groups.google.com/groups?selm=GTN.95Jun10022744%40ebt-inc&output=gplain
http://groups.google.com/groups?selm=GTN.95Jun10022744%40ebt-inc&output=gplain
http://www.useit.com/alertbox/9612.html
http://www.w3.org/TR/NOTE-XSL-970910
http://en.wikipedia.org/wiki/Opera_browser
http://en.wikipedia.org/wiki/Openoffice
http://en.wikipedia.org/wiki/OSI_model


[Pemberton 2000]
HTML WG Last Call Comments, part 1 of 2; Message posted to
www-xml-linking-comments 13 Mar 2000; Available from
http://lists.w3.org/Archives/Public/www-xml-linking-comments/

2000JanMar/0073.html; Accessed 25 Oct 2004.

[PNG 1996]
PNG (Portable Network Graphics) Specification Version 1.0; W3C
Recommendation 1 Oct 1996; Available from
http://www.w3.org/TR/REC-png

[Prescod 1997a]
Prescod, P.; Introduction to DSSSL; July, 1997; Available from
http://www.prescod.net/dsssl/; Accessed 25 Oct 2004.

[Prescod 1997b]
Prescod, P.; Heresy? Re: DSSSL WWW Enhancements; Message posted to
dssslist 18 May 1997; Available from http://www.biglist.com/lists/

dssslist/archives/199705/msg00035.html; Accessed 25 Oct 2004.

[Quint 1994]
Quint, V.; The Languages of Grif; Translated by Ethan Munson, GIPSI S.A.,
GRIF S.A., Version of April 18, 1994

[Radestock 2004]
Radestock, M.; Scheme Frequently Asked Questions; Version 1.8, 17 Oct
2004; Available from http://www.schemers.org/

Documents/FAQ/#N40081C; Accessed 25 Oct 2004.

[Raggett 1993a]
Raggett, D.; Standardizing new HTML features; Message posted to www-talk
27 Apr 1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0166.html; Accessed 25 Oct 2004.

[Raggett 1993b]
Raggett, D.; Re: Standardizing new HTML features; Message posted to
www-talk 28 Apr 1993; Available from http://www.webhistory.org/

www.lists/www-talk.1993q2/0186.html; Accessed 25 Oct 2004.

Cascading Style Sheets

294

http://lists.w3.org/Archives/Public/www-xml-linking-comments/2000JanMar/0073.html
http://lists.w3.org/Archives/Public/www-xml-linking-comments/2000JanMar/0073.html
http://www.w3.org/TR/REC-png
http://www.prescod.net/dsssl/
http://www.biglist.com/lists/dssslist/archives/199705/msg00035.html
http://www.biglist.com/lists/dssslist/archives/199705/msg00035.html
http://www.schemers.org/Documents/FAQ/#N40081C
http://www.schemers.org/Documents/FAQ/#N40081C
http://www.webhistory.org/www.lists/www-talk.1993q2/0166.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0166.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0186.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0186.html


[Raggett 1993c]
Raggett, D.; Re: Mail addresses as URLs; Message posted to www-talk 13 May
1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0313.html; Accessed 25 Oct 2004.

[Raggett 1993d]
Raggett, D.; Re: HTML+ and printed books; Message posted to www-talk 19
May 1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0349.html; Accessed 25 Oct 2004.

[Raggett 1993e]
Raggett, D.; Re HMML?; Message posted to www-talk 25 May 1993;
Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0385.html; Accessed 25 Oct 2004.

[Raggett 1993f]
Raggett, D.; Re: RE dtd2.html; Message posted to www-talk 27 May 1993;
Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0393.html; Accessed 25 Oct 2004.

[Raggett 1993g]
Raggett, D.; Re: Style sheets for HTML; Message posted to www-talk 11 Jun
1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q2/0448.html; Accessed 25 Oct 2004.

[Raggett 1995a]
Raggett, D.; A Review of the HTML+ Document Format; Web page last
changed 1 Feb 1995; Available from
http://www.w3.org/MarkUp/HTMLPlus/

htmlplus_paper/htmlplus.html; Accessed 25 Oct 2004.

[Raggett 1995b]
Raggett, D.; Document Type Definition for the HyperText Markup Language
(HTML DTD); Published 24 Mar 1995; Available from
http://www.w3.org/MarkUp/html3/html3.dtd; Accessed 25 Oct 2004.

References

295

http://www.webhistory.org/www.lists/www-talk.1993q2/0313.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0313.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0349.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0349.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0385.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0385.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0393.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0393.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0448.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0448.html
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_paper/htmlplus.html
http://www.w3.org/MarkUp/HTMLPlus/htmlplus_paper/htmlplus.html
http://www.w3.org/MarkUp/html3/html3.dtd


[Raggett 1995c]
Raggett, D.; HTML Tables; Internet draft, 7 Jul 1995; Available from
http://www.w3.org/MarkUp/html3-tables/tables.txt; Accessed 25
Oct 2004.

[Raisch 1993a]
Raisch, R.; Request for Comments: STYLESHEETS; Message posted to
www-talk 10 Jun 1993; Available from http://www.webhistory.org/

www.lists/www-talk.1993q2/0445.html; Accessed 25 Oct 2004.

[Raisch 1993b]
Raisch, R.; Re: Stylesheet Language; Message posted to www-talk 23 Oct
1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q4/0269.html; Accessed 25 Oct 2004.

[Raman 1996]
Raman, T. V.; Style Sheets For Producing Spoken Renderings; Available from
http://www.w3.org/Style/CSS/Speech/speech.html; Accessed 25 Oct
2004.

[Reid&Walker 1979]
Reid, B. K. and Walker, J. H.; Scribe Introductory User's Manual; Second
Edition, third printing, UniLogic Ltd, Pittsburgh, PA, July 1979;

[Reid 1980]
Reid, B. K.; Scribe: A Document Specification Language and its Compiler;
Phd dissertation, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA, October, 1980

[Reid 1989]
Reid, B. K.; Electronic Mail of Structured Documents; in André, J., Furuta,
R., Quint, V. (editors) Structured Documents, Cambridge University Press,
1989

[Rosenberg et al. 1991]
Rosenberg, J., Sherman, M., Marks, A. and Akkerjuis, J.; Multi-Media
Document Translation: Oda and the Express Project Springer-Verlag, 1991

Cascading Style Sheets

296

http://www.w3.org/MarkUp/html3-tables/tables.txt
http://www.webhistory.org/www.lists/www-talk.1993q2/0445.html
http://www.webhistory.org/www.lists/www-talk.1993q2/0445.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0269.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0269.html
http://www.w3.org/Style/CSS/Speech/speech.html


[Sandahl 1999]
Sandahl, T. I.; From Paper to Digital Documents: Challenging and Improving
the SGML Approach; Dr. Scient Thesis, University of Oslo, January 1999

[SGML 1986]
Standard Generalized Markup Language (SGML); ISO 8879:1986

[SGMLUG 1990]
A Brief History of the Development of SGML; SGML Users' Group, 11 Jun
1990; Available from http://www.sgmlsource.com/

history/sgmlhist.htm; Accessed 25 Oct 2004.

[Sherman 1991]
Guest Editorial; Sherman, M.; ComputerNetworks and ISDN Systems; 21
(1991) pp. 145-147, North Holland Available from
http://reports-archive.adm.cs.cmu.edu/anon/

itc/CMU-ITC-102.pdf; Accessed 25 Oct 2004.

[Sørgaard 1996]
Sørgaard, P. and Sandahl, T. I.; Problems with Styles in Word Processing: A
Weak Foundation for Electronic Publishing with SGML; Published in the
Proceedings of the 30th HICSS, Wailea, Hawaii, January 7-10, 1997

[Sperberg-McQueen 1994a]
Sperberg-McQueen, C.M.; Sketch of Simple Formatting Primitives; Original
version published 13 Sep 1994, updated 4 Jul 1995; Available from
http://tigger.cc.uic.edu/~cmsmcq/style-primitives.html;
Accessed 25 Oct 2004.

[Sperberg-McQueen 1994b]
Re: HTML style sheets; Sperberg-McQueen, C.M.; Message posted to
www-html 4 Nov 94; Available from http://lists.w3.org/Archives/

Public/www-html/1994Nov/0023.html; Accessed 25 Oct 2004.

[Suck 1996]
Xanadu Redux, Part I: The World Wide Web Consortium could learn a few
things from Xanadu; Available from http://www.suck.com/daily/

96/02/16/daily.html; Accessed 25 Oct 2004.

References

297

http://www.sgmlsource.com/history/sgmlhist.htm
http://www.sgmlsource.com/history/sgmlhist.htm
http://reports-archive.adm.cs.cmu.edu/anon/itc/CMU-ITC-102.pdf
http://reports-archive.adm.cs.cmu.edu/anon/itc/CMU-ITC-102.pdf
http://tigger.cc.uic.edu/~cmsmcq/style-primitives.html
http://lists.w3.org/Archives/Public/www-html/1994Nov/0023.html
http://lists.w3.org/Archives/Public/www-html/1994Nov/0023.html
http://www.suck.com/daily/96/02/16/daily.html
http://www.suck.com/daily/96/02/16/daily.html


[Thot 2001]
About Thot; Last changed 16 Dec 2001; Available from
http://www.inrialpes.fr/opera/Thot/AboutThot.html; Accessed 25
Oct 2004.

[USPS 1994]
U.S. Postal Service Purchasing Protest Decision P.S. Protest No. 94-15,
Interleaf Inc.; Written by William J. Jones, Senior Counsel, Contract Protests
and Policies; 4 Aug 1994; Available from http://www.usps.com/lawdept/

protestdecisions/1994/9415.htm; Accessed 25 Oct 2004.

[WASP 2004]
The Web Standards Project; Cascading Style Sheets; Available from
http://www.webstandards.org/learn/resources/css/; Accessed 26
Oct 2004.

[Watson&Davis 1991]
Watson, B. C. and Davis, R.; ODA and SGML: An Assessment of
Co-Existence Possibilities; Computer Standards & Interfaces 11 (1990/91)
169-176, Elsevier Science Publishers, 1991

[WD-CSS3-selectors 2001]
Glazman, D., Çelik, T. and Hickson, I.; Selectors; W3C Candidate
Recommendation, 13 Nov 2001; Available from http://www.w3.org/TR/

2001/CR-css3-selectors-20011113; Accessed 25 Oct 2004.

[WD-hlink]
Pemberton, S. and Ishikawa, M.; HLink – Link recognition for the XHTML
Family; W3C Working Draft, 13 Sep 2002; Available from
http://www.w3.org/TR/2002/WD-hlink-20020913/

[WD-positioning 1997]
Stevahn, R. (editor); Positioning HTML Elements with Cascading Style
Sheets; W3C Working Draft 31 Jan 1997; Available from
http://www.w3.org/TR/WD-positioning-970131; Accessed 25 Oct 2004.

Cascading Style Sheets

298

http://www.inrialpes.fr/opera/Thot/AboutThot.html
http://www.usps.com/lawdept/protestdecisions/1994/9415.htm
http://www.usps.com/lawdept/protestdecisions/1994/9415.htm
http://www.webstandards.org/learn/resources/css/
http://www.w3.org/TR/2001/CR-css3-selectors-20011113
http://www.w3.org/TR/2001/CR-css3-selectors-20011113
http://www.w3.org/TR/2002/WD-hlink-20020913/
http://www.w3.org/TR/WD-positioning-970131


[WD-style 1997]
Raggett, D., Bos, B. and Lie H. W.; HTML and Style Sheets; W3C Working
Draft 24 Mar 1997; Available from http://www.w3.org/TR/

WD-style-970324; Accessed 25 Oct 2004.

[WD-XML 1996]
Bray, T. and Sperberg-McQueen, C. M.; Extensible Markup Language
(XML); W3C Working Draft 14 Nov 1996; Available from
http://www.w3.org/pub/WWW/TR/WD-xml-961114.html; Accessed 25 Oct
2004.

[Wei 1992]
The Viola browser is documented in the Viola Browser Archive; Available
from http://www.viola.org; Accessed 25 Oct 2004.

[Wei 1993a]
Wei, P. Y.; Stylesheet Language; Message posted to www-talk 22 Oct 1993;
Available, in two parts, from http://www.webhistory.org/www.lists/

www-talk.1993q4/0264.html and http://www.webhistory.org/

www.lists/www-talk.1993q4/0265.html; Accessed 25 Oct 2004.

[Wei 1993b]
Wei, P. Y.; Re: Stylesheet Language; Message posted to www-talk 23 Oct
1993; Available from http://www.webhistory.org/www.lists/

www-talk.1993q4/0276.html; Accessed 25 Oct 2004.

[Wei 1993c]
Wei, P. Y.; FOSI; Message posted to www-talk 26 Oct 1993; Available from
http://www.webhistory.org/www.lists/

www-talk.1993q4/0297.html; Accessed 25 Oct 2004.

[Wei 1993d]
Wei, P. Y.; Stylesheet; Available from http://www.xcf.berkeley.edu/

~wei/viola/book/chp14.html; Accessed 26 Oct 2004.

[Wei 1994]
Wei, P. Y.; Re: Cascading HTML style sheets – a proposal; Message posted to
www-talk 24 Oct 1994; Available from http://www.w3.org/Style/

References

299

http://www.w3.org/TR/WD-style-970324
http://www.w3.org/TR/WD-style-970324
http://www.w3.org/pub/WWW/TR/WD-xml-961114.html
http://www.viola.org
http://www.webhistory.org/www.lists/www-talk.1993q4/0264.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0264.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0265.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0265.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0276.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0276.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0297.html
http://www.webhistory.org/www.lists/www-talk.1993q4/0297.html
http://www.xcf.berkeley.edu/~wei/viola/book/chp14.html
http://www.xcf.berkeley.edu/~wei/viola/book/chp14.html
http://www.w3.org/Style/History/www.eit.com/www.lists/www-talk.1994q4/0387.html


History/www.eit.com/www.lists/www-talk.1994q4/0387.html;
Accessed 25 Oct 2004.

[Weitzman&Wittenberg 1994]
Weitzman, L. and Wittenberg, K.; Automatic presentation of multimedia
documents using relational grammars; Proceedings of ACM Multimedia '94,
pp. 443-451, ACM Press, October 1994

[Wilson 2003a]
Wilson, B.; Browser Timelines; Available from
http://www.blooberry.com/indexdot/history/browsers.htm;
Accessed 26 Oct 2004.

[Wilson 2003b]
Wilson, B.; CSS Support History; Available from
http://www.blooberry.com/indexdot/css/supportkey/syntax.htm;
Accessed 26 Oct 2004.

[WML]
Wireless Markup Language Specification; Version 1.2, Wireless Application
Protocol Forum, 4 Nov 1999

[www-talk]
The www-talk mailing list was started in October 1991 and hosted much of the
electronic discussions about the technical development of the web. The
mailing list is archived by W3C (http://lists.w3.org/Archives/
Public/www-talk/), and the World Wide Web History Project
(http://www.webhistory.org).

[W3C 2003]
Some early ideas for HTML; Available from http://www.w3.org/

MarkUp/historical. Last modified on 9 Jan 2003. Accessed 13 Mar 2005.

[W3C 2004]
W3C CSS1 Test Suite – Version History; Available from
http://www.w3.org/Style/CSS/Test/CSS1/current/vhistory. Last
modified 25 Oct 2004. Accessed 13 Mar 2005.

Cascading Style Sheets

300

http://www.w3.org/Style/History/www.eit.com/www.lists/www-talk.1994q4/0387.html
http://www.blooberry.com/indexdot/history/browsers.htm
http://www.blooberry.com/indexdot/css/supportkey/syntax.htm
http://lists.w3.org/Archives/Public/www-talk/
http://lists.w3.org/Archives/Public/www-talk/
http://www.webhistory.org
http://www.w3.org/MarkUp/historical
http://www.w3.org/MarkUp/historical
http://www.w3.org/Style/CSS/Test/CSS1/current/vhistory


[Xerox Star]
A brief description of the Xerox Star computer workstation can be found from
http://en.wikipedia.org/wiki/Xerox_Star/; Accessed 25 Oct 2004.

[XLink 2001]
DeRose, S., Maler, E. and Orchard, D.; XML Linking Language (XLink)
Version 1.0; W3C Recommendation 27 June 2001; Available from
http://www.w3.org/TR/2001/REC-xlink-20010627/

[XML 1998]
Bray, T., Paoli, J., Sperberg-McQueen, C. M.; Extensible Markup Language
(XML) 1.0; Available from http://www.w3.org/TR/1998/

REC-xml-19980210

[XML-names 1999]
Bray, T., Hollander, D. and Layman, A.; Namespaces in XML; W3C
Recommendation 14 Jan 1999; Available from http://www.w3.org/TR/

1999/REC-xml-names-19990114

[XML-stylesheet 1999]
Clark, J. (editor); Associating Style Sheets with XML documents, Version 1.0;
W3C Recommendation 29 Jun 1999; Available from http://www.w3.org/

1999/06/REC-xml-stylesheet-19990629/

[XSL 2001]
Adler, S., Berglund, A., Caruso, J., Deach, S., Graham, T., Grosso, P.,
Gutentag, E., Milowski, A., Parnell, S., Richman, J. and Zilles, S.; Extensible
Stylesheet Language (XSL) Version 1.0; W3C Recommendation 15 October
2001; Available from http://www.w3.org/TR/2001/REC-xsl-20011015/

[X11]
X11 (a.k.a. the “X Window System” or “X”) is a windowing system for bitmap
displays. A brief description of X11 is available from
http://en.wikipedia.org/wiki/X11; Accessed 25 Oct 2004.

[Zeldman 2003]
Zeldman, J.; Designing with Web Standards; New Riders, May 2003

References

301

http://en.wikipedia.org/wiki/Xerox_Star/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629/
http://www.w3.org/TR/2001/REC-xsl-20011015/
http://en.wikipedia.org/wiki/X11/




Colophon

Writing a thesis about style sheets sets certain expectations; the resulting document
should use proper markup and actively use style sheets. And it should be presentable.
This section describes briefly how these goals were achieved for this thesis.

Almost every document I have produced over the last decade (except email) has
been written in HyperText Markup Language (HTML) and styled in CSS. A thesis,
however, is significantly more complex than is a letter or a home page. First, a thesis
is, generally, much longer than most other documents. Second, a thesis should,
ideally, retain more semantics than do most other documents. Third, the
presentation of a thesis – especially on paper – is a challenge to CSS.

The length of a thesis is mostly an issue in the authoring process. Basically, there
are two ways of handling the length issue: either the document is split into several
manageable parts (e.g., chapters), or the whole document is kept in one file. The
right choice will depend on the capacity of the editor, its search and overview
capabilities, and the personal preferences of the author. GNU-Emacs, which is my
editor of choice, can edit huge files and has good search capabilities within a file. I
chose, therefore, to edit the thesis as one HTML file.

HTML was developed in a scientific environment and, generally, is well suited to
retain the semantics of a thesis. For example, internal and external references can be
marked up as hyperlinks, and code examples can be marked with the CODE element.
I have chosen to use the CODE element when marking up inline HTML code. This,
however, is not able to discern between different types of HTML code. It cannot
distinguish, for example, between HTML elements and HTML attributes. To retain
this distinction, I have introduced several class names which are given as values on
the CLASS attribute. For example, the markup of the previous sentence is:

To retain this distinction, I have introduced several class names

which are given as values on the <code class="attribute">CLASS</code>

attribute.

Similarly, other elements have also been subclassed.
Needless to say, the presentation of this thesis must be specified in CSS. Any

other solution would, I presume, automatically disqualify the dissertation from

303



further review. Thankfully, CSS is at a stage where specifying the presentation of a
thesis is possible. The associated style sheet describes the presentation of this thesis
on five different media types: screen, projection, print, aural and handheld.
Admittedly, few people will ever read the document on a handheld or aural device,
but the extra work of specifying the presentation for such output devices is
minimal.

The media type that requires most work is print. The University of Oslo, like
most other institutions, demands that doctoral dissertations are submitted on printed
paper.22 The easiest way to comply with this requirement is to print the HTML
document from a browser. Alas, browsers – including the ones for which I have
partial responsibility – are rarely able to print web documents in ways that makes for
pleasant reading. In order to generate a decent-looking printed document, it is
necessary to use a dedicated formatter. I have chosen to use the Prince formatter
which supports the print-specific features of CSS2 as well as some features proposed
for CSS3. Headers and footers, footnotes and page numbers in the table of contents
have been specified in CSS.

The PDF version of this document is typeset in 10pt/15pt Bergamo. Code
examples are typeset in 9pt/13pt Bitstream Vera Sans Mono.

The resulting document is one that I am proud to submit.

22 The requirement does not use the word “paper”, but prescribes that the thesis shall be
submitted “bound or stapled” in five copies.

Cascading Style Sheets

304


	Cascading Style Sheets
	© Håkon Wium Lie, 1994-2005 This work is licensed under a Creative Commons Attribution-NonCommercial 2.5 License. Submitted 29th of March, 2005, as partial fulfillment of the degree Doctor Philosophiœ At the Faculty of Mathematics and Natural Sciences University of Oslo Norway Series of dissertations submitted to the Faculty of Mathematics and Natural Sciences, University of Oslo. No. 498 ISSN 1501-7710 Cover: Inger Sandved Anfinsen. Printed in Norway: AiT e-dit AS, Oslo, 2006. Produced in co-operation with Unipub AS. The thesis is produced by Unipub AS merely in connection with the thesis defence. Kindly direct all inquiries regarding the thesis to the copyright holder or the unit which grants the doctorate. Unipub AS is owned by The University Foundation for Student Life (SiO)
	Abstract
	Inspiration
	Table of contents
	List of figures
	List of tables
	Acknowledgements
	Overview and summary of the thesis
	Introduction
	Structured documents
	Style sheets prior to the web
	Style sheet proposals for the web
	Web requirements
	Cascading Style Sheets
	Problems in CSS
	CSS for small screens
	Cascading links
	Future research
	Conclusions
	Glossary
	References
	Colophon

